探索可复现的对比语言图像学习规模定律:Reproducible scaling laws for contrastive language-image learning
2024-06-16 21:21:59作者:蔡丛锟
在这个激动人心的开源项目中,由一众杰出研究人员共同推出的"可复现的对比语言图像学习规模定律"为我们揭示了大规模CLIP预训练和下游任务转移的奥秘。这个项目已被接纳在CVPR 2023会议上展示。
项目介绍
项目的核心在于提供了一套代码库,用于重现关于对比语言图像对齐模型(如CLIP)的大规模预训练实验,并在其上进行各种下游任务的性能评估。通过研究不同模型架构、数据量和训练参数之间的关系,项目作者建立了可复现的规模定律,为未来的研究者提供了可靠的参考。
项目技术分析
利用此项目,你可以体验到如何使用Python脚本下载并运行预训练模型,以及如何在OpenCLIP框架中集成这些模型。项目包含了详细的说明,以帮助你理解如何通过调整不同的训练规模(如样本数量、模型大小和数据集大小)来优化CLIP模型的性能。此外,还提供了用于生成论文中所讨论的"规模曲线"(scaling plots)的代码。
项目及技术应用场景
这个项目非常适合研究自然语言处理和计算机视觉领域的学者,他们可以利用这里提供的资源探索大型数据集(如LAION-400m和LAION-5B)上的预训练模型效果,并将模型应用于各种下游任务,如图像分类、物体检测等。对于希望优化自身模型性能或者了解大规模预训练最新进展的开发人员来说,这也是一个宝贵的工具。
项目特点
- 可复现性:所有实验都设计为可复制,确保结果的可靠性。
- 广泛适用性:涵盖了多种模型架构和数据规模,适用于多样的研究场景。
- 易于使用:提供清晰的指令和脚本,方便下载、安装和运行预训练模型。
- 社区支持:与OpenCLIP项目紧密关联,受益于持续的更新和支持。
如果你正在寻找改进你的语言图像模型预训练策略的方法,或者对构建大规模预训练模型有深厚的兴趣,那么这个项目绝对值得你投入时间和精力。立即加入社区,探索对比语言图像学习的广阔领域吧!
为了引用这项工作,请使用以下的BibTeX条目:
@article{cherti2022reproducible,
title={Reproducible scaling laws for contrastive language-image learning},
author={Cherti, Mehdi and Beaumont, Romain and Wightman, Ross and Wortsman, Mitchell and Ilharco, Gabriel and Gordon, Cade and Schuhmann, Christoph and Schmidt, Ludwig and Jitsev, Jenia},
journal={arXiv preprint arXiv:2212.07143},
year={2022}
}
现在就开始你的探索之旅,见证语言和图像之间桥梁的搭建过程!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
275
暂无简介
Dart
696
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869