NanoDet项目中bounding box输出机制解析
2025-06-05 23:50:46作者:牧宁李
前言
NanoDet作为一款轻量级目标检测框架,其bounding box的输出机制对于开发者理解和使用该项目至关重要。本文将深入剖析NanoDet项目中从模型预测到最终bounding box输出的完整流程,帮助开发者更好地掌握这一关键技术点。
NanoDet的bounding box处理流程
在NanoDet项目中,bounding box的生成和处理主要分为以下几个关键步骤:
- 模型预测阶段:模型会同时输出分类预测(cls_preds)和回归预测(reg_preds)
- 后处理阶段:将原始预测转换为实际的bounding box坐标
- 非极大值抑制(NMS)阶段:过滤重叠的检测框
核心实现解析
NanoDet的bounding box输出核心逻辑位于nanodet/model/head/nanodet_plus_head.py文件中的get_bboxes方法。该方法负责将模型的原始输出转换为最终的检测框。
get_bboxes方法详解
get_bboxes方法接收三个主要参数:
- cls_preds:分类预测结果
- reg_preds:回归预测结果
- img_metas:图像元信息
在该方法内部,主要完成了以下工作:
- 解码预测结果:将回归预测转换为实际的bounding box坐标
- 应用分类分数阈值:过滤掉低置信度的预测
- 执行NMS操作:去除冗余的检测框
NMS实现细节
NanoDet采用标准的非极大值抑制算法来处理重叠的检测框。该算法会:
- 根据置信度对所有预测框进行排序
- 选择置信度最高的框作为基准
- 计算其他框与该基准框的交并比(IoU)
- 移除IoU超过阈值的框
- 重复上述过程直到处理完所有框
可视化与最终输出
虽然demo.py中的可视化函数主要展示不同置信度的检测框,但实际的NMS处理已经在get_bboxes方法中完成。开发者可以通过以下方式获取最终的bounding box:
- 调用模型的forward方法获取原始预测
- 通过
get_bboxes方法处理预测结果 - 获取处理后的检测框列表
实践建议
对于想要自定义输出流程的开发者,可以考虑:
- 修改NMS阈值以适应不同场景
- 调整分类分数阈值平衡召回率和准确率
- 扩展输出格式以满足特定应用需求
总结
NanoDet通过get_bboxes方法封装了从原始预测到最终bounding box的完整处理流程,其中NMS操作是确保检测结果质量的关键步骤。理解这一机制有助于开发者更好地使用和定制NanoDet框架,满足各种实际应用场景的需求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
410
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
251