Apache Hudi在Flink中的MERGE_ON_READ表性能优化实践
2025-06-08 08:30:39作者:鲍丁臣Ursa
问题背景
在使用Apache Hudi与Flink集成时,用户发现MERGE_ON_READ类型的表在首次数据插入和查询时性能表现不佳。具体表现为:
- 首次插入8条简单数据耗时长达11分钟
- 首次查询操作持续35分钟仍未完成
- 检查点(Checkpoint)在首次操作时出现超时
问题分析
通过日志和现象分析,可以得出以下结论:
- 索引机制影响:默认情况下Hudi使用Bloom Filter索引,对于小规模数据插入效率不高
- 表类型差异:COPY_ON_WRITE表表现正常,说明问题特定于MERGE_ON_READ实现
- 存储后端影响:使用本地文件系统(file://)比HDFS性能更差
解决方案
经过验证,采用**分桶索引(Bucket Index)**可以显著提升MERGE_ON_WRITE表的性能:
CREATE TABLE hudi_table(
ts BIGINT,
uuid VARCHAR(40) PRIMARY KEY NOT ENFORCED,
rider VARCHAR(20),
driver VARCHAR(20),
fare DOUBLE,
city VARCHAR(20)
)
PARTITIONED BY (`city`)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://namenode:8020/path/to/table',
'table.type' = 'MERGE_ON_READ',
'hoodie.index.type' = 'BUCKET'
);
技术原理
分桶索引优势
- 精确映射:将记录直接映射到特定文件,避免Bloom Filter的假阳性问题
- 减少IO:查询时只需读取相关桶文件,降低随机读取开销
- 写入优化:写入时能精确定位目标文件,减少文件查找时间
MERGE_ON_READ特性
- 延迟合并:更新先写入日志文件,后续才合并到基文件
- 读取放大:查询时需要合并基文件和日志文件
- 小文件问题:频繁写入会产生大量小文件
生产建议
-
索引选择:
- 小规模数据:优先使用分桶索引
- 超大规模数据:考虑全局索引
-
存储配置:
- 使用HDFS或对象存储替代本地文件系统
- 合理设置HDFS副本数(通常3副本)
-
Flink调优:
- 调整检查点间隔和超时时间
- 合理设置并行度
- 配置足够的内存资源
-
表类型选择:
- 读多写少场景:COPY_ON_WRITE
- 写多读少场景:MERGE_ON_READ
总结
Apache Hudi与Flink集成时,通过合理选择索引类型和表类型,可以显著提升性能。对于MERGE_ON_READ表,分桶索引是解决小数据量场景下性能问题的有效方案。在实际生产环境中,还需要结合数据规模、访问模式和基础设施情况综合优化配置。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134