Apache Hudi在Flink中的MERGE_ON_READ表性能优化实践
2025-06-08 08:30:39作者:鲍丁臣Ursa
问题背景
在使用Apache Hudi与Flink集成时,用户发现MERGE_ON_READ类型的表在首次数据插入和查询时性能表现不佳。具体表现为:
- 首次插入8条简单数据耗时长达11分钟
- 首次查询操作持续35分钟仍未完成
- 检查点(Checkpoint)在首次操作时出现超时
问题分析
通过日志和现象分析,可以得出以下结论:
- 索引机制影响:默认情况下Hudi使用Bloom Filter索引,对于小规模数据插入效率不高
- 表类型差异:COPY_ON_WRITE表表现正常,说明问题特定于MERGE_ON_READ实现
- 存储后端影响:使用本地文件系统(file://)比HDFS性能更差
解决方案
经过验证,采用**分桶索引(Bucket Index)**可以显著提升MERGE_ON_WRITE表的性能:
CREATE TABLE hudi_table(
ts BIGINT,
uuid VARCHAR(40) PRIMARY KEY NOT ENFORCED,
rider VARCHAR(20),
driver VARCHAR(20),
fare DOUBLE,
city VARCHAR(20)
)
PARTITIONED BY (`city`)
WITH (
'connector' = 'hudi',
'path' = 'hdfs://namenode:8020/path/to/table',
'table.type' = 'MERGE_ON_READ',
'hoodie.index.type' = 'BUCKET'
);
技术原理
分桶索引优势
- 精确映射:将记录直接映射到特定文件,避免Bloom Filter的假阳性问题
- 减少IO:查询时只需读取相关桶文件,降低随机读取开销
- 写入优化:写入时能精确定位目标文件,减少文件查找时间
MERGE_ON_READ特性
- 延迟合并:更新先写入日志文件,后续才合并到基文件
- 读取放大:查询时需要合并基文件和日志文件
- 小文件问题:频繁写入会产生大量小文件
生产建议
-
索引选择:
- 小规模数据:优先使用分桶索引
- 超大规模数据:考虑全局索引
-
存储配置:
- 使用HDFS或对象存储替代本地文件系统
- 合理设置HDFS副本数(通常3副本)
-
Flink调优:
- 调整检查点间隔和超时时间
- 合理设置并行度
- 配置足够的内存资源
-
表类型选择:
- 读多写少场景:COPY_ON_WRITE
- 写多读少场景:MERGE_ON_READ
总结
Apache Hudi与Flink集成时,通过合理选择索引类型和表类型,可以显著提升性能。对于MERGE_ON_READ表,分桶索引是解决小数据量场景下性能问题的有效方案。在实际生产环境中,还需要结合数据规模、访问模式和基础设施情况综合优化配置。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137