SpanABSA 项目使用教程
2024-09-27 02:39:54作者:温艾琴Wonderful
1. 项目目录结构及介绍
SpanABSA/
├── absa/
│ ├── __init__.py
│ ├── run_extract_span.py
│ ├── run_cls_span.py
│ ├── run_joint_span.py
│ └── ...
├── data/
│ └── absa/
│ ├── rest_total_train.txt
│ ├── rest_total_test.txt
│ └── ...
├── image/
├── squad/
├── bert/
│ ├── bert-base-uncased/
│ │ ├── vocab.txt
│ │ ├── bert_config.json
│ │ └── pytorch_model.bin
│ └── ...
├── LICENSE.txt
├── README.md
└── ...
目录结构说明
- absa/: 包含项目的主要代码文件,包括多目标提取器和极性分类器的训练和预测脚本。
- data/absa/: 包含训练和测试数据文件。
- image/: 可能包含项目相关的图像文件。
- squad/: 可能包含与SQuAD任务相关的文件。
- bert/: 包含预训练的BERT模型文件。
- LICENSE.txt: 项目的许可证文件。
- README.md: 项目的说明文档。
2. 项目启动文件介绍
主要启动文件
- run_extract_span.py: 用于训练和预测多目标提取器的脚本。
- run_cls_span.py: 用于训练和预测极性分类器的脚本。
- run_joint_span.py: 用于联合训练多目标提取器和极性分类器的脚本。
使用示例
训练多目标提取器
python -m absa.run_extract_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/extract/01
训练极性分类器
python -m absa.run_cls_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/cls/01
3. 项目的配置文件介绍
主要配置文件
- bert_config.json: BERT模型的配置文件,包含模型的超参数设置。
- vocab.txt: BERT模型的词汇表文件。
- pytorch_model.bin: 预训练的BERT模型权重文件。
配置文件路径
配置文件通常位于bert/bert-base-uncased/目录下,使用时需要指定路径:
export BERT_DIR=bert/bert-base-uncased
数据目录
数据文件通常位于data/absa/目录下,使用时需要指定路径:
export DATA_DIR=data/absa
通过以上配置,可以正确加载模型和数据,进行训练和预测。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1