SpanABSA 项目使用教程
2024-09-27 06:08:10作者:温艾琴Wonderful
1. 项目目录结构及介绍
SpanABSA/
├── absa/
│ ├── __init__.py
│ ├── run_extract_span.py
│ ├── run_cls_span.py
│ ├── run_joint_span.py
│ └── ...
├── data/
│ └── absa/
│ ├── rest_total_train.txt
│ ├── rest_total_test.txt
│ └── ...
├── image/
├── squad/
├── bert/
│ ├── bert-base-uncased/
│ │ ├── vocab.txt
│ │ ├── bert_config.json
│ │ └── pytorch_model.bin
│ └── ...
├── LICENSE.txt
├── README.md
└── ...
目录结构说明
- absa/: 包含项目的主要代码文件,包括多目标提取器和极性分类器的训练和预测脚本。
- data/absa/: 包含训练和测试数据文件。
- image/: 可能包含项目相关的图像文件。
- squad/: 可能包含与SQuAD任务相关的文件。
- bert/: 包含预训练的BERT模型文件。
- LICENSE.txt: 项目的许可证文件。
- README.md: 项目的说明文档。
2. 项目启动文件介绍
主要启动文件
- run_extract_span.py: 用于训练和预测多目标提取器的脚本。
- run_cls_span.py: 用于训练和预测极性分类器的脚本。
- run_joint_span.py: 用于联合训练多目标提取器和极性分类器的脚本。
使用示例
训练多目标提取器
python -m absa.run_extract_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/extract/01
训练极性分类器
python -m absa.run_cls_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/cls/01
3. 项目的配置文件介绍
主要配置文件
- bert_config.json: BERT模型的配置文件,包含模型的超参数设置。
- vocab.txt: BERT模型的词汇表文件。
- pytorch_model.bin: 预训练的BERT模型权重文件。
配置文件路径
配置文件通常位于bert/bert-base-uncased/目录下,使用时需要指定路径:
export BERT_DIR=bert/bert-base-uncased
数据目录
数据文件通常位于data/absa/目录下,使用时需要指定路径:
export DATA_DIR=data/absa
通过以上配置,可以正确加载模型和数据,进行训练和预测。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250