SpanABSA:基于Span的开放领域目标情感分析
2024-09-21 09:09:16作者:宗隆裙
项目介绍
SpanABSA 是一个基于 Span 提取和分类框架的开源项目,专为解决开放领域的针对性情感分析任务设计。该项目由 Hu Minghao 等人在 ACL 2019 上发表的论文《基于Span的提取然后分类在开放领域目标情感分析中的应用》中提出。它采用了一种全新的方法,直接从句子中抽取多个意见目标,并利用这些目标的Span表示来预测其情感极性,克服了传统序列标注方法中搜索空间巨大和情感不一致性的问题。
项目快速启动
环境准备
确保你的开发环境已经安装了以下组件:
- Python 3.6 或更高版本
- Pytorch 1.1 或以上
- AllenNLP
- 下载并解压 BERT-Base 的 uncased 版本到本地目录
设置必要的环境变量以指向数据和模型路径:
export DATA_DIR=./data/absa
export BERT_DIR=./path/to/bert-base-uncased
运行多目标提取器
首先训练多目标提取器:
python -m absa.run_extract_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/extract/01
训练极性分类器
随后,训练极性分类器:
python -m absa.run_cls_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/cls/01
构建管道系统
训练完成后,可以通过以下命令构建并运行管道系统进行测试:
python -m absa.run_extract_span \
... # 使用相同的参数,添加 --do_pipeline 标志
python -m absa.run_cls_span \
... # 类似地,添加 --do_pipeline 并指定 --extraction_file 路径
应用案例和最佳实践
在实际应用中,开发者可以将SpanABSA集成到文本分析流水线中,自动对社交媒体、产品评论等进行目标特定的情感分析。最佳实践包括调整模型参数以适应特定领域的数据,比如通过微调BERT模型或调整logit阈值来优化性能。
典型生态项目
虽然此项目本身就是专注于开放领域目标情感分析的一个独立工具,但结合其他自然语言处理(NLP)库如spaCy、NLTK或者Hugging Face Transformers,可以进一步增强其在复杂场景下的应用能力。例如,预处理步骤可能涉及使用spaCy进行实体识别,而后期分析则可以利用Transformers进行更深层次的语言理解工作,共同构建一个更为强大的情感分析生态系统。
通过上述步骤和说明,开发者可以快速上手并开始利用SpanABSA进行开放领域的目标情感分析研究与应用。记住,适应性和定制化是关键,依据具体应用场景调整模型配置将是提升效果的重要一环。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
245
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
450
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885