SpanABSA:基于Span的开放领域目标情感分析
2024-09-21 09:09:16作者:宗隆裙
项目介绍
SpanABSA 是一个基于 Span 提取和分类框架的开源项目,专为解决开放领域的针对性情感分析任务设计。该项目由 Hu Minghao 等人在 ACL 2019 上发表的论文《基于Span的提取然后分类在开放领域目标情感分析中的应用》中提出。它采用了一种全新的方法,直接从句子中抽取多个意见目标,并利用这些目标的Span表示来预测其情感极性,克服了传统序列标注方法中搜索空间巨大和情感不一致性的问题。
项目快速启动
环境准备
确保你的开发环境已经安装了以下组件:
- Python 3.6 或更高版本
- Pytorch 1.1 或以上
- AllenNLP
- 下载并解压 BERT-Base 的 uncased 版本到本地目录
设置必要的环境变量以指向数据和模型路径:
export DATA_DIR=./data/absa
export BERT_DIR=./path/to/bert-base-uncased
运行多目标提取器
首先训练多目标提取器:
python -m absa.run_extract_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/extract/01
训练极性分类器
随后,训练极性分类器:
python -m absa.run_cls_span \
--vocab_file $BERT_DIR/vocab.txt \
--bert_config_file $BERT_DIR/bert_config.json \
--init_checkpoint $BERT_DIR/pytorch_model.bin \
--do_train \
--do_predict \
--data_dir $DATA_DIR \
--train_file rest_total_train.txt \
--predict_file rest_total_test.txt \
--train_batch_size 32 \
--output_dir out/cls/01
构建管道系统
训练完成后,可以通过以下命令构建并运行管道系统进行测试:
python -m absa.run_extract_span \
... # 使用相同的参数,添加 --do_pipeline 标志
python -m absa.run_cls_span \
... # 类似地,添加 --do_pipeline 并指定 --extraction_file 路径
应用案例和最佳实践
在实际应用中,开发者可以将SpanABSA集成到文本分析流水线中,自动对社交媒体、产品评论等进行目标特定的情感分析。最佳实践包括调整模型参数以适应特定领域的数据,比如通过微调BERT模型或调整logit阈值来优化性能。
典型生态项目
虽然此项目本身就是专注于开放领域目标情感分析的一个独立工具,但结合其他自然语言处理(NLP)库如spaCy、NLTK或者Hugging Face Transformers,可以进一步增强其在复杂场景下的应用能力。例如,预处理步骤可能涉及使用spaCy进行实体识别,而后期分析则可以利用Transformers进行更深层次的语言理解工作,共同构建一个更为强大的情感分析生态系统。
通过上述步骤和说明,开发者可以快速上手并开始利用SpanABSA进行开放领域的目标情感分析研究与应用。记住,适应性和定制化是关键,依据具体应用场景调整模型配置将是提升效果的重要一环。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249