PaddleOCR关键信息抽取训练中的数据集规模问题解析
2025-05-01 12:43:23作者:曹令琨Iris
问题背景
在使用PaddleOCR进行关键信息抽取(KIE)模型训练时,特别是针对商业票据这类特定场景的数据集,开发者可能会遇到一个典型的训练中断问题。当执行训练命令后,程序在评估阶段抛出"TypeError: 'NoneType' object is not iterable"错误,导致训练过程中断。
问题本质分析
经过深入排查,这个问题实际上源于数据集规模与训练参数配置不匹配。具体表现为:
- 数据集规模过小:当训练使用的数据集样本数量较少时
- 评估批次设置不当:eval配置中的batch_size_per_card参数值超过了实际数据集的数量
- 代码逻辑限制:程序在评估阶段对迭代次数的判断条件为>=0时直接中断
解决方案
针对这一问题,开发者可以采取以下两种解决方案:
方案一:调整批次大小参数
将配置文件中的batch_size_per_card参数值设置为小于或等于数据集样本数量的合适值。建议设置为:
- 最小值:数据集样本数量+1
- 这样可以确保评估阶段有足够的数据进行有效评估
方案二:修改源代码逻辑
对于有代码修改能力的开发者,可以修改程序中的迭代判断条件:
- 原条件:
if 迭代次数 >= 0 - 修改为:
if 迭代次数 > 0 - 这种修改可以避免在小数据集情况下过早中断评估流程
最佳实践建议
- 数据集准备:确保训练数据集具有足够规模,特别是对于复杂的关键信息抽取任务
- 参数调优:根据数据集实际规模合理配置batch_size相关参数
- 监控机制:训练过程中加入适当的日志输出,便于及时发现类似问题
- 版本适配:确认使用的PaddleOCR版本与PaddlePaddle框架版本的兼容性
总结
这个案例展示了深度学习训练中参数配置与数据规模匹配的重要性。特别是在使用PaddleOCR进行关键信息抽取这类特定任务时,开发者需要特别注意训练参数与数据特征的适配性。通过合理配置或适当修改,可以有效解决这类因数据规模导致的训练中断问题,确保模型训练顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.18 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492