首页
/ PyTorch Image Models 中 ViT 网络的特征提取功能增强

PyTorch Image Models 中 ViT 网络的特征提取功能增强

2025-05-04 22:19:27作者:胡唯隽

在计算机视觉领域,Vision Transformer (ViT) 模型因其出色的性能而广受欢迎。最近,PyTorch Image Models (timm) 库对其 ViT 网络实现进行了重要更新,增加了专门用于特征提取的功能,这为下游任务如目标检测和语义分割提供了更好的支持。

背景与需求

传统上,ViT 模型主要用于图像分类任务,其输出通常是整个图像的全局特征表示。然而,许多计算机视觉任务如目标检测和语义分割需要不同层次的空间特征图。这就提出了一个问题:如何从 ViT 模型中提取中间层特征用于这些任务?

在 timm 库的早期版本中,ViT 网络并未实现 features_only 方法,这限制了其在需要多层次特征的任务中的应用。开发者尝试将 ViT 作为 Mask2Former 等模型的骨干网络时遇到了障碍。

技术实现

timm 库的最新更新通过以下方式解决了这一问题:

  1. 引入了 forward_intermediates() 方法,允许从 ViT 网络中提取中间层特征
  2. 实现了 FeatureGetterNet 包装器,统一了不同架构的特征提取接口
  3. 支持多种 ViT 变体,包括 BEiT、ViT、ViT-SAM、EVA、MViTv2、Twins 和 DeiT

新的实现保留了原始模型的功能,同时增加了提取中间特征的能力。测试表明,这些改进后的模型在目标检测任务上表现良好,首轮训练就能达到 0.152-0.2 mAP 的精度。

应用场景

这一改进使得 ViT 网络能够更好地应用于:

  1. 目标检测系统
  2. 语义分割任务
  3. 实例分割模型
  4. 其他需要多层次特征表示的计算机视觉应用

兼容性考虑

值得注意的是,这一改变可能会影响与某些框架(如 HuggingFace Transformers)的兼容性,因为这些框架可能假设所有骨干网络都使用特定的特征提取方式。开发者在使用时需要注意这一点,可能需要相应的适配代码。

未来方向

timm 库的维护者表示,未来计划将这一特性扩展到更多网络架构,如 CaiT、XCiT 和 VOLO 等,进一步丰富计算机视觉工具生态。

这一更新为计算机视觉研究者提供了更多可能性,使得基于 Transformer 的模型能够在更广泛的任务中发挥作用,同时也展示了开源社区持续改进和创新的力量。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8