PyTorch Image Models 中 ViT 网络的特征提取功能增强
2025-05-04 07:57:37作者:胡唯隽
在计算机视觉领域,Vision Transformer (ViT) 模型因其出色的性能而广受欢迎。最近,PyTorch Image Models (timm) 库对其 ViT 网络实现进行了重要更新,增加了专门用于特征提取的功能,这为下游任务如目标检测和语义分割提供了更好的支持。
背景与需求
传统上,ViT 模型主要用于图像分类任务,其输出通常是整个图像的全局特征表示。然而,许多计算机视觉任务如目标检测和语义分割需要不同层次的空间特征图。这就提出了一个问题:如何从 ViT 模型中提取中间层特征用于这些任务?
在 timm 库的早期版本中,ViT 网络并未实现 features_only 方法,这限制了其在需要多层次特征的任务中的应用。开发者尝试将 ViT 作为 Mask2Former 等模型的骨干网络时遇到了障碍。
技术实现
timm 库的最新更新通过以下方式解决了这一问题:
- 引入了
forward_intermediates()方法,允许从 ViT 网络中提取中间层特征 - 实现了
FeatureGetterNet包装器,统一了不同架构的特征提取接口 - 支持多种 ViT 变体,包括 BEiT、ViT、ViT-SAM、EVA、MViTv2、Twins 和 DeiT
新的实现保留了原始模型的功能,同时增加了提取中间特征的能力。测试表明,这些改进后的模型在目标检测任务上表现良好,首轮训练就能达到 0.152-0.2 mAP 的精度。
应用场景
这一改进使得 ViT 网络能够更好地应用于:
- 目标检测系统
- 语义分割任务
- 实例分割模型
- 其他需要多层次特征表示的计算机视觉应用
兼容性考虑
值得注意的是,这一改变可能会影响与某些框架(如 HuggingFace Transformers)的兼容性,因为这些框架可能假设所有骨干网络都使用特定的特征提取方式。开发者在使用时需要注意这一点,可能需要相应的适配代码。
未来方向
timm 库的维护者表示,未来计划将这一特性扩展到更多网络架构,如 CaiT、XCiT 和 VOLO 等,进一步丰富计算机视觉工具生态。
这一更新为计算机视觉研究者提供了更多可能性,使得基于 Transformer 的模型能够在更广泛的任务中发挥作用,同时也展示了开源社区持续改进和创新的力量。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178