PyTorch Image Models 中集成 InternViT 模型的技术解析
背景介绍
PyTorch Image Models (timm) 是一个广泛使用的计算机视觉模型库,近期社区讨论将 InternViT 模型集成到该库中。InternViT 是由 OpenGVLab 团队开发的一系列视觉 Transformer 模型,包括 300M 参数和 6B 参数两个版本。
InternViT 模型特点
InternViT 模型基于标准的 Vision Transformer (ViT) 架构,但通过大规模数据训练获得了优异的性能表现。其中 300M 参数版本是从 6B 参数的教师模型蒸馏而来。该模型在多种下游视觉任务中表现出色,包括图像分类、目标检测以及图像到序列任务(如 OCR)。
技术实现细节
从技术实现角度来看,InternViT 保持了标准 ViT 的核心架构,主要包含以下组件:
- 多头自注意力机制
- 前馈神经网络
- 层归一化(LayerNorm)
值得注意的是,InternViT 提供了 RMSNorm 作为可选方案,但在实际配置中主要使用标准的 LayerNorm。模型中的分块处理(tiling)方法主要用于构建视觉语言模型(VLM),这部分功能超出了基础 ViT 的范畴。
性能优势
InternViT 的核心优势在于其训练过程使用了海量数据,这使得模型在各种下游任务中都能展现出强大的迁移学习能力。特别是 300M 参数的版本,在保持较高性能的同时,模型尺寸相对适中,更适合实际部署。
集成考量
在 timm 库中集成 InternViT 时,开发团队主要关注的是其作为视觉主干网络的核心功能。分块处理等与 VLM 相关的特性不在集成范围内,因为这些功能属于更高级的应用场景。
总结
InternViT 的加入丰富了 timm 库的模型选择,为研究人员和开发者提供了一个经过大规模预训练的优秀视觉 Transformer 实现。这种集成使得社区能够更方便地利用这些先进模型进行各种计算机视觉任务的实验和开发。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00