LLaMA-Factory项目中DPO训练显存优化实践
2025-05-01 23:10:58作者:田桥桑Industrious
问题背景
在使用LLaMA-Factory项目进行DPO(直接偏好优化)训练时,用户遇到了显存不足的问题。具体表现为在8块V100 16GB GPU上训练Qwen2.5-0.5B模型时出现CUDA OOM错误,即使使用了DeepSpeed的ZeRO-3优化和CPU offload技术。
问题分析
从技术细节来看,这个问题有几个关键点:
-
模型规模:Qwen2.5-0.5B虽然不算大模型,但在DPO训练时需要同时维护参考模型和训练模型,显存需求翻倍
-
输入长度:用户设置的cutoff_len为4096,长序列会显著增加显存消耗
-
并行训练:使用8卡并行时,虽然总batch size为8(118),但每张卡仍需处理完整的前向和后向计算
-
DeepSpeed配置:即使用了ZeRO-3和CPU offload,DPO训练的特殊性可能导致优化不完全
解决方案探索
经过社区讨论和实验,总结出以下几种可行的解决方案:
1. 使用LoRA微调
LoRA(Low-Rank Adaptation)技术可以显著减少可训练参数数量。对于0.5B模型:
- 默认rank=8时,可训练参数约440万,占总参数0.88%
- 推荐rank=16,在效果和效率间取得更好平衡
2. 调整训练配置
- 关闭DeepSpeed,尝试pure_bf16模式(需硬件支持)
- 降低序列长度(cutoff_len)
- 减少max_samples数量
- 调整gradient_accumulation_steps
3. 硬件方案
- 使用更大显存的GPU(如V100 32GB)
- 增加GPU数量(用户尝试了两台8卡服务器仍不足)
实践建议
对于资源有限的团队,推荐以下实践路径:
- 优先尝试LoRA微调,从rank=16开始
- 逐步增加rank值,观察效果和显存消耗
- 如果必须全参数微调,考虑:
- 减小模型规模
- 缩短输入序列
- 使用梯度检查点技术
- 监控显存使用情况,及时调整配置
技术原理补充
DPO训练相比普通SFT需要更多显存的原因在于:
- 需要同时维护参考模型和训练模型的状态
- 需要计算chosen和rejected响应的log概率
- 反向传播时需要保持更多中间结果
理解这些原理有助于更有针对性地进行显存优化。
总结
在LLaMA-Factory项目中进行DPO训练时,显存优化是一个需要仔细权衡的问题。通过合理选择微调方法、调整训练配置和理解底层原理,可以在有限资源下实现高效训练。对于大多数应用场景,LoRA微调提供了一个效果和效率俱佳的平衡点。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660