Keras Transformer 项目使用文档
2024-09-16 15:05:31作者:羿妍玫Ivan
1. 项目目录结构及介绍
keras-transformer/
├── examples/
│ ├── basic_usage.py
│ ├── custom_transformer.py
│ └── ...
├── keras_transformer/
│ ├── __init__.py
│ ├── transformer.py
│ └── ...
├── tests/
│ ├── test_transformer.py
│ └── ...
├── setup.py
├── README.md
└── requirements.txt
目录结构说明
- examples/: 包含项目的示例代码,展示了如何使用
keras-transformer库。basic_usage.py: 基本的 Transformer 模型使用示例。custom_transformer.py: 自定义 Transformer 模型的示例。
- keras_transformer/: 包含项目的主要代码,实现了 Transformer 模型的核心功能。
__init__.py: 初始化文件,用于导入模块。transformer.py: 实现了 Transformer 模型的核心类和函数。
- tests/: 包含项目的测试代码,用于确保代码的正确性。
test_transformer.py: 测试 Transformer 模型的功能。
- setup.py: 项目的安装脚本,用于安装项目依赖。
- README.md: 项目的说明文档,包含项目的简介、安装方法、使用示例等。
- requirements.txt: 项目依赖的 Python 包列表。
2. 项目的启动文件介绍
项目的启动文件通常是指用于运行示例代码或测试代码的入口文件。在 keras-transformer 项目中,启动文件可以是 examples/basic_usage.py 或 tests/test_transformer.py。
examples/basic_usage.py
该文件展示了如何使用 keras-transformer 库中的 Transformer 模型进行基本的文本分类任务。启动该文件可以直接运行一个简单的 Transformer 模型示例。
python examples/basic_usage.py
tests/test_transformer.py
该文件包含了测试 Transformer 模型功能的代码。启动该文件可以运行测试用例,确保 Transformer 模型的正确性。
python tests/test_transformer.py
3. 项目的配置文件介绍
在 keras-transformer 项目中,配置文件主要是 setup.py 和 requirements.txt。
setup.py
setup.py 是 Python 项目的标准安装脚本,用于定义项目的元数据和依赖项。通过运行以下命令可以安装项目及其依赖:
python setup.py install
requirements.txt
requirements.txt 文件列出了项目运行所需的 Python 包及其版本。可以通过以下命令安装这些依赖:
pip install -r requirements.txt
该文件通常包含类似以下的内容:
tensorflow==2.6.0
keras==2.6.0
numpy==1.19.5
...
这些配置文件确保了项目的正确安装和运行,是项目使用和开发的重要组成部分。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134