MTAN: 多任务注意力网络使用指南
2024-08-17 17:25:55作者:曹令琨Iris
1. 项目目录结构及介绍
本开源项目lorenmt/mtan基于论文《End-to-End Multi-Task Learning with Attention》实现了一种新颖的多任务学习架构。以下是该项目的基本目录结构概述:
.
├── LICENSE # 许可证文件
├── README.md # 项目说明文件
├── im2im_pred # 可能包含模型预测相关的代码或实验结果
├── visual_decathlon # 解决多任务学习问题的一个数据集或实验设置相关文件夹
├── .gitignore # Git忽略文件,定义了哪些文件不应被版本控制
├── code # 根据上下文推测,可能包含了核心算法和模型的源代码
│ ├── ...
├── data # 数据处理或样例数据可能存放于此
│ ├── ...
├── scripts # 启动脚本或者用于数据预处理、训练等的脚本集合
│ ├── ...
├── ... # 其它潜在的子目录和文件
重要文件和文件夹简介:
code: 包含了模型的核心实现代码,如MTAN架构的具体实现。scripts: 存放运行实验、训练模型或进行评估的脚本。data: 若存在,通常用于存放数据集或数据预处理脚本。
2. 项目的启动文件介绍
启动文件通常位于scripts目录下,尽管具体文件名未直接提供,它们可能是以.py结尾的脚本,例如train.py, evaluate.py。一个典型的启动流程可能会涉及:
- 训练命令示例:
python scripts/train.py --config config.yml
这里假设config.yml是配置文件,而train.py是执行模型训练的主要脚本。
注意: 实际的启动命令需依据项目内提供的具体脚本来确定。
3. 项目的配置文件介绍
配置文件,如假定的config.yml,是设定实验参数的关键,通常包括但不限于:
model:
name: 'MTAN' # 模型名称
backbone: 'resnetXX' # 使用的基础骨干网络
tasks: # 定义多任务中的每个任务
- name: 'task1'
loss_weight: 1.0 # 任务损失权重
- name: 'task2'
loss_weight: 0.5
training:
batch_size: 16 # 批次大小
num_epochs: 100 # 训练轮数
lr: 0.001 # 学习率
配置文件允许用户自定义多个关键参数,比如模型架构细节、任务的特定设置、训练过程的超参数等,从而适应不同的实验需求和环境。
以上就是一个基于假设的概述,实际操作时应参照项目中的具体文件和文档来获取最准确的信息。由于未直接提供完整的脚本和配置文件内容,上述示例仅为指导性说明。在进行项目初始化和运行前,请详细阅读项目内的README.md文件和任何额外的文档说明。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355