GMAN:交通预测的图多注意力网络
2024-09-22 22:43:34作者:凌朦慧Richard
项目介绍
GMAN(Graph Multi-Attention Network)是一个用于交通预测的先进深度学习模型,由Chuanpan Zheng、Xiaoliang Fan、Cheng Wang和Jianzhong Qi在AAAI-2020会议上提出。该项目提供了一个完整的实现,展示了如何利用图多注意力机制来提高交通预测的准确性。GMAN的核心思想是通过结合图神经网络(GNN)和多头注意力机制,捕捉交通网络中的复杂依赖关系,从而实现更精准的交通流量预测。
项目技术分析
GMAN模型的技术架构主要由以下几个部分组成:
- 图神经网络(GNN):GNN用于处理交通网络中的节点和边,捕捉节点之间的空间依赖关系。
- 多头注意力机制:通过多头注意力机制,模型能够同时关注交通网络中的多个关键区域,从而更好地捕捉时间序列数据中的动态变化。
- 编码器-解码器结构:GMAN采用了编码器-解码器结构,编码器负责提取交通网络的特征,解码器则用于生成未来的交通流量预测。
项目及技术应用场景
GMAN模型的应用场景非常广泛,特别是在以下领域:
- 智能交通系统:通过精准的交通流量预测,帮助交通管理部门优化交通信号控制,减少交通拥堵。
- 物流规划:物流公司可以利用GMAN模型预测不同路段的交通状况,优化配送路线,提高物流效率。
- 城市规划:城市规划者可以利用GMAN模型分析交通流量数据,为未来的城市发展提供科学依据。
项目特点
GMAN项目具有以下几个显著特点:
- 高精度预测:通过结合图神经网络和多头注意力机制,GMAN能够实现高精度的交通流量预测。
- 易于使用:项目提供了详细的代码实现和数据集,用户可以轻松上手,进行实验和应用。
- 开源社区支持:GMAN项目得到了开源社区的广泛支持,已有第三方PyTorch实现,用户可以根据自己的需求选择合适的框架。
- 数据集丰富:项目提供了多个交通数据集,用户可以直接使用这些数据集进行模型训练和验证。
结语
GMAN项目为交通预测领域提供了一个强大的工具,通过结合图神经网络和多头注意力机制,实现了高精度的交通流量预测。无论你是交通管理专家、物流规划师,还是城市规划者,GMAN都能为你提供有力的支持。快来尝试GMAN,体验其强大的预测能力吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322