Milvus项目中JSON键索引构建的内存优化实践
背景介绍
在Milvus 2.5版本中,当用户尝试为包含大量JSON键的字段创建索引时,IndexNode组件出现了内存不足(OOM)的问题。该问题发生在集群部署环境下,使用Pulsar作为消息队列,IndexNode配置为4核CPU和8GB内存的情况下。
问题现象
用户创建了一个包含主键、向量和JSON字段的集合,其中每个JSON文档包含100个键(key_0到key_99)。当向该集合插入1000万条记录并尝试创建索引时,IndexNode组件因内存不足而反复崩溃,进入CrashLoopBackOff状态。
技术分析
问题根源
-
JSON键统计功能:Milvus通过
enabledJsonKeyStats和enabledGrowingSegmentJSONKeyStats配置启用了JSON键统计功能,这会导致系统为每个JSON键维护统计信息。 -
内存消耗:当JSON文档包含大量键且数据规模庞大时(1000万条记录×100个键),系统需要维护的统计信息量呈线性增长,导致内存需求急剧上升。
-
资源限制:IndexNode配置的8GB内存上限无法满足这种大规模JSON键索引构建的需求。
解决方案
开发团队通过引入强制垃圾回收(GC)机制解决了这个问题:
-
内存回收优化:在创建JSON统计信息的过程中,系统会主动触发垃圾回收,及时释放不再使用的内存。
-
资源管理:通过更精细的内存管理,确保在构建大规模JSON键索引时不会因内存积累而导致OOM。
实践建议
对于需要在Milvus中使用JSON字段并构建索引的用户,建议:
-
合理规划JSON结构:尽量避免单个JSON文档包含过多键,可以考虑将数据拆分到多个字段中。
-
资源配置:当确实需要处理大规模JSON键索引时,应适当增加IndexNode的内存配置。
-
功能启用:谨慎启用
enabledJsonKeyStats等JSON统计功能,评估其对系统资源的影响。 -
版本选择:确保使用包含此修复的Milvus版本,以避免类似的内存问题。
总结
Milvus团队通过优化内存管理机制,解决了大规模JSON键索引构建时的内存溢出问题。这一改进使得Milvus在处理复杂JSON数据结构时更加稳定可靠,为用户提供了更好的使用体验。对于需要处理半结构化数据的用户,现在可以更放心地利用Milvus的JSON功能来实现灵活的搜索和分析需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00