Milvus项目中JSON键索引构建的内存优化实践
背景介绍
在Milvus 2.5版本中,当用户尝试为包含大量JSON键的字段创建索引时,IndexNode组件出现了内存不足(OOM)的问题。该问题发生在集群部署环境下,使用Pulsar作为消息队列,IndexNode配置为4核CPU和8GB内存的情况下。
问题现象
用户创建了一个包含主键、向量和JSON字段的集合,其中每个JSON文档包含100个键(key_0到key_99)。当向该集合插入1000万条记录并尝试创建索引时,IndexNode组件因内存不足而反复崩溃,进入CrashLoopBackOff状态。
技术分析
问题根源
-
JSON键统计功能:Milvus通过
enabledJsonKeyStats和enabledGrowingSegmentJSONKeyStats配置启用了JSON键统计功能,这会导致系统为每个JSON键维护统计信息。 -
内存消耗:当JSON文档包含大量键且数据规模庞大时(1000万条记录×100个键),系统需要维护的统计信息量呈线性增长,导致内存需求急剧上升。
-
资源限制:IndexNode配置的8GB内存上限无法满足这种大规模JSON键索引构建的需求。
解决方案
开发团队通过引入强制垃圾回收(GC)机制解决了这个问题:
-
内存回收优化:在创建JSON统计信息的过程中,系统会主动触发垃圾回收,及时释放不再使用的内存。
-
资源管理:通过更精细的内存管理,确保在构建大规模JSON键索引时不会因内存积累而导致OOM。
实践建议
对于需要在Milvus中使用JSON字段并构建索引的用户,建议:
-
合理规划JSON结构:尽量避免单个JSON文档包含过多键,可以考虑将数据拆分到多个字段中。
-
资源配置:当确实需要处理大规模JSON键索引时,应适当增加IndexNode的内存配置。
-
功能启用:谨慎启用
enabledJsonKeyStats等JSON统计功能,评估其对系统资源的影响。 -
版本选择:确保使用包含此修复的Milvus版本,以避免类似的内存问题。
总结
Milvus团队通过优化内存管理机制,解决了大规模JSON键索引构建时的内存溢出问题。这一改进使得Milvus在处理复杂JSON数据结构时更加稳定可靠,为用户提供了更好的使用体验。对于需要处理半结构化数据的用户,现在可以更放心地利用Milvus的JSON功能来实现灵活的搜索和分析需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00