AviSynthAiUpscale 项目教程
2024-09-24 00:59:09作者:尤辰城Agatha
1. 项目的目录结构及介绍
AviSynthAiUpscale 项目的目录结构如下:
AviSynthAiUpscale/
├── AiUpscale.avsi
├── LICENSE
├── README.md
├── Shaders/
│ ├── Shaders/
│ ├── figures/
│ └── mpv user shaders/
└── gitattributes
目录结构介绍
- AiUpscale.avsi: 这是项目的主要脚本文件,包含了用于视频超分辨率的 AviSynth+ 实现。
- LICENSE: 项目的许可证文件,采用 GPL-3.0 许可证。
- README.md: 项目的说明文件,包含了项目的概述、安装和使用说明。
- Shaders/: 包含用于实时超分辨率的 HLSL 和 GLSL 着色器文件。
- Shaders/: 具体的着色器文件。
- figures/: 可能包含一些示意图或参考图像。
- mpv user shaders/: 用于 mpv 播放器的用户着色器文件。
- gitattributes: Git 属性文件,用于定义文件的属性。
2. 项目的启动文件介绍
项目的启动文件是 AiUpscale.avsi。这个文件是 AviSynth+ 脚本,用于实现视频的超分辨率处理。
AiUpscale.avsi 文件介绍
- 功能: 该脚本实现了一些超分辨率卷积神经网络(Super-Resolution Convolutional Neural Networks)的功能。
- 参数:
Input: 输入图像或视频。Factor: 放大倍数。Luma: 亮度或 RGB 放大模型。Chroma: 色度放大方法。CResample: 色度重采样方法。Mode: 模式选择,可以是 "Photo" 或 "LineArt"。CPlace: 色度放置。OutDepth: 输出位深度。
3. 项目的配置文件介绍
项目的配置文件主要是 README.md 和 mpv.conf。
README.md 文件介绍
- 内容: 包含了项目的概述、安装步骤、使用说明以及一些示例配置。
- 安装步骤:
- 复制
AiUpscale.avsi和Shaders文件夹到 AviSynth+ 插件目录。 - 配置 mpv 播放器以使用实时着色器。
- 复制
mpv.conf 文件介绍
- 位置: 在 Windows 系统中,位于
%AppData%\mpv\目录下;在 Linux 系统中,位于~/config/mpv/目录下。 - 内容: 用于配置 mpv 播放器以使用实时着色器。
- 示例配置:
profile=gpu-hq gpu-api=d3d11 glsl-shader="C:\users\USERNAME\AppData\Roaming\mpv\shaders\AiUpscale_x2_Fast_Photo.glsl" gpu-shader-cache-dir="C:\users\USERNAME\AppData\Roaming\mpv\shaders\cache"
通过以上配置,您可以成功安装和使用 AviSynthAiUpscale 项目进行视频超分辨率处理。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
【免费下载】 DLL修复工具免费版 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19