legged_control 开源项目使用教程
2024-09-14 04:14:19作者:滑思眉Philip
1. 项目介绍
legged_control 是一个基于非线性模型预测控制(NMPC)和全身控制(WBC)的足式机器人控制框架,主要依赖于 OCS2 和 ros-control。该项目的主要优势在于其高性能和易用性,能够为足式机器人社区提供一个强大的模型驱动基线。
该项目的主要特点包括:
- 高性能控制:基于 NMPC 和 WBC 的控制框架,能够实现高效的机器人控制。
- 易用性:通过 ros-control 接口,用户可以轻松地将该框架应用于自定义机器人。
- 开源社区支持:项目托管在 GitHub 上,社区成员可以贡献代码和反馈问题。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- Ubuntu 20.04
- ROS Noetic
2.2 安装依赖
首先,安装必要的依赖包:
sudo apt install liburdfdom-dev liboctomap-dev libassimp-dev
2.3 克隆项目
克隆 legged_control 项目到您的本地工作空间:
git clone https://github.com/qiayuanliao/legged_control.git
2.4 编译项目
进入项目目录并编译:
cd legged_control
catkin build legged_controllers legged_unitree_description
2.5 运行仿真
设置机器人类型环境变量并启动仿真:
export ROBOT_TYPE=a1
roslaunch legged_unitree_description empty_world.launch
2.6 加载控制器
加载控制器并启动控制服务:
roslaunch legged_controllers load_controller.launch cheater:=false
rosservice call /controller_manager/switch_controller "start_controllers: ['controllers/legged_controller'] stop_controllers: [''] strictness: 0 start_asap: false timeout: 0.0"
3. 应用案例和最佳实践
3.1 案例一:A1 机器人控制
许多实验室已经成功地将 legged_control 框架应用于他们的 A1 机器人上。以下是一些实验室的部署时间:
- 小鹏机器人:1 天
- 宇树机器人:2 小时
3.2 最佳实践
- 使用外部计算设备:建议使用 NUC 等外部计算设备来运行控制框架,以获得更高的计算频率。
- 自定义机器人部署:通过模仿
legged_examples/legged_unitree/legged_unitree_hw类,用户可以轻松地将该框架部署到自定义机器人上。
4. 典型生态项目
4.1 OCS2
OCS2 是一个用于机器人控制的开源库,提供了非线性模型预测控制(NMPC)的实现。legged_control 项目依赖于 OCS2 来实现高效的机器人控制。
4.2 ros-control
ros-control 是 ROS 中的一个控制框架,提供了通用的硬件接口和控制器管理器。legged_control 项目通过 ros-control 接口,使得用户可以轻松地将其应用于自定义机器人。
4.3 pinocchio
pinocchio 是一个用于机器人动力学和控制的开源库,提供了高效的算法来计算机器人动力学和运动学。legged_control 项目使用 pinocchio 来处理机器人的动力学问题。
通过以上模块的介绍和快速启动指南,您应该能够顺利地开始使用 legged_control 项目,并将其应用于您的足式机器人控制任务中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355