高性能四足机器人控制框架:legged_control
2024-09-18 17:50:58作者:伍霜盼Ellen
项目介绍
legged_control 是一个基于 OCS2 和 ros-control 的四足机器人控制框架,采用非线性模型预测控制(NMPC)和全身控制(WBC)技术。该项目旨在为四足机器人社区提供一个高性能且易于使用的模型驱动控制基线。
项目技术分析
技术架构
legged_control 的核心技术架构包括:
- 非线性模型预测控制(NMPC):通过 OCS2 提供的优化接口,在每个控制周期内求解最优控制问题。NMPC 通过多重射击法将最优控制问题转化为非线性规划(NLP)问题,并使用序列二次规划(SQP)求解。
- 全身控制(WBC):WBC 在当前时刻考虑多个任务,通过求解二次规划(QP)问题,在更高优先级任务的线性约束的零空间内最小化不等式约束的松弛变量,确保严格的层次结果。
关键技术点
- NMPC 优化问题:通过定义系统状态和输入,结合约束条件和成本函数,求解最优控制问题。
- WBC 任务定义:在 WBC 中定义多个任务,通过求解 QP 问题,确保任务的优先级和严格层次。
项目及技术应用场景
legged_control 适用于以下应用场景:
- 四足机器人控制:适用于需要高性能控制的四足机器人,如 A1 机器人。
- 自定义机器人控制:通过简单的配置和修改,可以轻松部署到自定义的四足机器人上。
- 机器人研究与开发:为机器人研究人员提供一个高性能的控制基线,加速研究和开发进程。
项目特点
高性能
legged_control 是目前开源四足机器人 MPC 控制框架中性能最佳的之一,能够提供高精度的控制效果。
易于部署
用户可以在几小时内将该框架部署到 A1 机器人上,并通过简单的配置适应自定义机器人。
灵活性
得益于 ros-control 接口,用户可以轻松地将该框架应用于自定义机器人,实现快速开发和部署。
开源社区支持
项目开源,社区活跃,用户可以获得丰富的文档和社区支持,加速开发和问题解决。
总结
legged_control 是一个高性能、易于使用的四足机器人控制框架,适用于各种四足机器人控制场景。无论是研究、开发还是实际应用,legged_control 都能为用户提供强大的支持。如果你正在寻找一个高性能的四足机器人控制解决方案,legged_control 绝对值得一试!
项目地址: qiayuanliao/legged_control
参考文献:
- [1] T. Flayols, A. Del Prete, P. Wensing, A. Mifsud, M. Benallegue, and O. Stasse, “Experimental evaluation of simple estimators for humanoid robots,” in IEEE-RAS International Conference on Humanoid Robots, 2017.
- [2] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Springer, 2016.
- [3] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer, “Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations,” Journal of Process Control, vol. 12, no. 4, pp. 577–585, 2002.
- [4] M. H. Raibert, Legged Robots That Balance. MIT Press, 1986.
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178