在Darts项目中处理预测时目标变量不可用的技术方案
2025-05-27 10:08:03作者:邵娇湘
背景介绍
在时间序列预测项目中,我们经常会遇到目标变量滞后的问题。具体表现为:在预测时刻,我们只能获取到特征变量(x1,x2,x3等)的最新值,而目标变量(y)的最新值需要经过较长时间(如几周)才能获得。这种场景给模型训练带来了特殊挑战。
问题分析
传统的时间序列预测模型(如TSMixer)通常需要同时使用历史特征变量和历史目标变量作为输入。但在上述场景中,目标变量在预测时刻是不可用的,这导致两个关键问题:
- 训练时模型会学习依赖历史目标变量,而预测时这些变量不可用
- 目标变量的可用时间不固定,难以通过简单的时移(shift)操作解决
解决方案
方案一:使用回归模型
Darts提供的回归模型(RegressionModel)可以完全忽略目标变量的历史值,仅使用协变量进行预测:
model = RegressionModel(
lags=None,
lags_past_covariates=6,
output_chunk_length=6
)
model.fit(target, past_covariates=past_cov)
这种方法的优点是实现简单,缺点是可能损失目标变量中的时序信息。
方案二:定制TSMixer模型
对于需要保持TSMixer模型结构的情况,可以通过子类化修改模型实现:
- 创建自定义模块类,重写forward方法忽略目标输入
- 创建自定义模型类,返回自定义模块实例
class _CustomTSMixerModule(_TSMixerModule):
def __init__(self, **kwargs):
self.input_target_dim = kwargs["input_dim"]
kwargs["input_dim"] = 0
super().__init__(**kwargs)
@io_processor
def forward(self, x_in):
x_past, x_future, x_static = x_in
x_past = x_past[:, :, self.input_target_dim:]
return super().forward.__wrapped__(self, (x_past, x_future, x_static))
class CustomTSMixerModel(TSMixerModel):
def _create_model(self, train_sample):
# 原始参数计算逻辑
return _CustomTSMixerModule(**params)
方案三:修改数据集
另一种思路是在数据加载阶段就过滤掉目标变量:
class StrippedMixedCovariatesSequentialDataset(MixedCovariatesSequentialDataset):
def __getitem__(self, idx):
vals = list(super().__getitem__(idx))
vals[0] = vals[0]*0 # 清零目标变量
vals[2] = vals[2]*0 # 清零历史未来协变量
return tuple(vals)
技术要点
- 输入张量结构:在Darts中,目标变量总是位于输入张量的起始位置
- 预测时处理:需要将目标变量设为NaN或零值
- 可逆变换:当忽略目标变量时,不能使用可逆实例标准化
最佳实践建议
- 对于简单场景,优先考虑使用RegressionModel
- 需要保持特定模型结构时,采用子类化方案
- 在资源受限情况下,可以考虑数据集过滤方案
- 无论采用哪种方案,都需要确保预测时的输入结构与训练时一致
总结
处理预测时目标变量不可用的问题是时间序列预测中的常见挑战。Darts项目提供了多种灵活的解决方案,开发者可以根据具体需求选择最适合的方法。理解这些技术方案的原理和实现细节,将有助于在实际项目中做出更合理的技术决策。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C059
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19