在Darts项目中处理预测时目标变量不可用的技术方案
2025-05-27 23:54:42作者:邵娇湘
背景介绍
在时间序列预测项目中,我们经常会遇到目标变量滞后的问题。具体表现为:在预测时刻,我们只能获取到特征变量(x1,x2,x3等)的最新值,而目标变量(y)的最新值需要经过较长时间(如几周)才能获得。这种场景给模型训练带来了特殊挑战。
问题分析
传统的时间序列预测模型(如TSMixer)通常需要同时使用历史特征变量和历史目标变量作为输入。但在上述场景中,目标变量在预测时刻是不可用的,这导致两个关键问题:
- 训练时模型会学习依赖历史目标变量,而预测时这些变量不可用
- 目标变量的可用时间不固定,难以通过简单的时移(shift)操作解决
解决方案
方案一:使用回归模型
Darts提供的回归模型(RegressionModel)可以完全忽略目标变量的历史值,仅使用协变量进行预测:
model = RegressionModel(
lags=None,
lags_past_covariates=6,
output_chunk_length=6
)
model.fit(target, past_covariates=past_cov)
这种方法的优点是实现简单,缺点是可能损失目标变量中的时序信息。
方案二:定制TSMixer模型
对于需要保持TSMixer模型结构的情况,可以通过子类化修改模型实现:
- 创建自定义模块类,重写forward方法忽略目标输入
- 创建自定义模型类,返回自定义模块实例
class _CustomTSMixerModule(_TSMixerModule):
def __init__(self, **kwargs):
self.input_target_dim = kwargs["input_dim"]
kwargs["input_dim"] = 0
super().__init__(**kwargs)
@io_processor
def forward(self, x_in):
x_past, x_future, x_static = x_in
x_past = x_past[:, :, self.input_target_dim:]
return super().forward.__wrapped__(self, (x_past, x_future, x_static))
class CustomTSMixerModel(TSMixerModel):
def _create_model(self, train_sample):
# 原始参数计算逻辑
return _CustomTSMixerModule(**params)
方案三:修改数据集
另一种思路是在数据加载阶段就过滤掉目标变量:
class StrippedMixedCovariatesSequentialDataset(MixedCovariatesSequentialDataset):
def __getitem__(self, idx):
vals = list(super().__getitem__(idx))
vals[0] = vals[0]*0 # 清零目标变量
vals[2] = vals[2]*0 # 清零历史未来协变量
return tuple(vals)
技术要点
- 输入张量结构:在Darts中,目标变量总是位于输入张量的起始位置
- 预测时处理:需要将目标变量设为NaN或零值
- 可逆变换:当忽略目标变量时,不能使用可逆实例标准化
最佳实践建议
- 对于简单场景,优先考虑使用RegressionModel
- 需要保持特定模型结构时,采用子类化方案
- 在资源受限情况下,可以考虑数据集过滤方案
- 无论采用哪种方案,都需要确保预测时的输入结构与训练时一致
总结
处理预测时目标变量不可用的问题是时间序列预测中的常见挑战。Darts项目提供了多种灵活的解决方案,开发者可以根据具体需求选择最适合的方法。理解这些技术方案的原理和实现细节,将有助于在实际项目中做出更合理的技术决策。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133