在Darts项目中处理预测时目标变量不可用的技术方案
2025-05-27 06:59:51作者:邵娇湘
背景介绍
在时间序列预测项目中,我们经常会遇到目标变量滞后的问题。具体表现为:在预测时刻,我们只能获取到特征变量(x1,x2,x3等)的最新值,而目标变量(y)的最新值需要经过较长时间(如几周)才能获得。这种场景给模型训练带来了特殊挑战。
问题分析
传统的时间序列预测模型(如TSMixer)通常需要同时使用历史特征变量和历史目标变量作为输入。但在上述场景中,目标变量在预测时刻是不可用的,这导致两个关键问题:
- 训练时模型会学习依赖历史目标变量,而预测时这些变量不可用
 - 目标变量的可用时间不固定,难以通过简单的时移(shift)操作解决
 
解决方案
方案一:使用回归模型
Darts提供的回归模型(RegressionModel)可以完全忽略目标变量的历史值,仅使用协变量进行预测:
model = RegressionModel(
    lags=None,
    lags_past_covariates=6,
    output_chunk_length=6
)
model.fit(target, past_covariates=past_cov)
这种方法的优点是实现简单,缺点是可能损失目标变量中的时序信息。
方案二:定制TSMixer模型
对于需要保持TSMixer模型结构的情况,可以通过子类化修改模型实现:
- 创建自定义模块类,重写forward方法忽略目标输入
 - 创建自定义模型类,返回自定义模块实例
 
class _CustomTSMixerModule(_TSMixerModule):
    def __init__(self, **kwargs):
        self.input_target_dim = kwargs["input_dim"]
        kwargs["input_dim"] = 0
        super().__init__(**kwargs)
    @io_processor
    def forward(self, x_in):
        x_past, x_future, x_static = x_in
        x_past = x_past[:, :, self.input_target_dim:]
        return super().forward.__wrapped__(self, (x_past, x_future, x_static))
class CustomTSMixerModel(TSMixerModel):
    def _create_model(self, train_sample):
        # 原始参数计算逻辑
        return _CustomTSMixerModule(**params)
方案三:修改数据集
另一种思路是在数据加载阶段就过滤掉目标变量:
class StrippedMixedCovariatesSequentialDataset(MixedCovariatesSequentialDataset):
    def __getitem__(self, idx):
        vals = list(super().__getitem__(idx))
        vals[0] = vals[0]*0  # 清零目标变量
        vals[2] = vals[2]*0  # 清零历史未来协变量
        return tuple(vals)
技术要点
- 输入张量结构:在Darts中,目标变量总是位于输入张量的起始位置
 - 预测时处理:需要将目标变量设为NaN或零值
 - 可逆变换:当忽略目标变量时,不能使用可逆实例标准化
 
最佳实践建议
- 对于简单场景,优先考虑使用RegressionModel
 - 需要保持特定模型结构时,采用子类化方案
 - 在资源受限情况下,可以考虑数据集过滤方案
 - 无论采用哪种方案,都需要确保预测时的输入结构与训练时一致
 
总结
处理预测时目标变量不可用的问题是时间序列预测中的常见挑战。Darts项目提供了多种灵活的解决方案,开发者可以根据具体需求选择最适合的方法。理解这些技术方案的原理和实现细节,将有助于在实际项目中做出更合理的技术决策。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444