探索深度神经进化:玩转Atari只需六个神经元
在这个令人惊叹的开源项目Deep Neuroevolution experiments,开发者Giuseppe Cuccu展示了如何利用神经进化策略来解决强化学习中的控制问题,即使在处理复杂如Atari游戏的情况下,也能仅仅使用六个神经元就能实现高效的学习。
项目介绍
这个项目基于论文《仅用六个神经元玩Atari》(Playing Atari with Six Neurons)的相关代码,并利用了名为machine_learning_workbench
的库,特别是其0.8.0版本。它实现了多种算法,包括Unsupervised Learning plus Evolutionary Reinforcement Learning(UL-ELR)、Block Diagonal Natural Evolution Strategy(BD-NES)、Radial Natural Evolution Strategy(RNES)以及Online Vector Quantization(Online VQ)。所有这些都在OpenAI Gym和GVGAI_GYM提供的环境中运行,为实验提供了强大的平台支持。
项目技术分析
该项目采用了一种独特的组合方法,即无监督学习与进化强化学习相结合,使得神经网络能够自我学习并优化其策略。这种技术不仅减少了网络的复杂性,而且在处理像Atari这样的视觉强化学习任务时,仍然能表现出色。例如,BD-NES通过块对角线结构提高了自然进化策略的效率,而RNES则引入了新颖性重启机制以改善进化过程。
此外,项目还利用了在线向量量化(Online VQ),这是一种可以逐步改进表示质量和压缩数据的技术,进一步增强了模型的适应性和学习能力。
项目及技术应用场景
此项目非常适合于那些希望探索强化学习、神经进化策略和无监督学习结合的人。它的应用场景广泛,包括但不限于游戏智能体开发、机器人控制、自动决策系统等任何需要从经验中学习的环境。
项目特点
- 简洁高效 - 只需六个神经元就可以实现复杂的Atari游戏控制。
- 可复现性 - 提供完整的源代码,方便研究者进行实验验证和二次开发。
- 强大库依赖 - 利用OpenAI Gym和GVGAI_GYM,提供多样的环境选择。
- 灵活扩展 - 支持多种进化策略,可以根据需求调整或添加新的算法。
要尝试该项目,只需安装必要的依赖并按照提供的说明执行代码即可开始你的探索之旅。无论你是研究人员还是对机器学习感兴趣的开发者,这个项目都值得你深入挖掘,体验神经进化的魅力。
许可证: MIT
引用: 查看项目README文件获取相关论文和库的完整引用信息。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









