探索深度神经进化:玩转Atari只需六个神经元
在这个令人惊叹的开源项目Deep Neuroevolution experiments,开发者Giuseppe Cuccu展示了如何利用神经进化策略来解决强化学习中的控制问题,即使在处理复杂如Atari游戏的情况下,也能仅仅使用六个神经元就能实现高效的学习。
项目介绍
这个项目基于论文《仅用六个神经元玩Atari》(Playing Atari with Six Neurons)的相关代码,并利用了名为machine_learning_workbench的库,特别是其0.8.0版本。它实现了多种算法,包括Unsupervised Learning plus Evolutionary Reinforcement Learning(UL-ELR)、Block Diagonal Natural Evolution Strategy(BD-NES)、Radial Natural Evolution Strategy(RNES)以及Online Vector Quantization(Online VQ)。所有这些都在OpenAI Gym和GVGAI_GYM提供的环境中运行,为实验提供了强大的平台支持。
项目技术分析
该项目采用了一种独特的组合方法,即无监督学习与进化强化学习相结合,使得神经网络能够自我学习并优化其策略。这种技术不仅减少了网络的复杂性,而且在处理像Atari这样的视觉强化学习任务时,仍然能表现出色。例如,BD-NES通过块对角线结构提高了自然进化策略的效率,而RNES则引入了新颖性重启机制以改善进化过程。
此外,项目还利用了在线向量量化(Online VQ),这是一种可以逐步改进表示质量和压缩数据的技术,进一步增强了模型的适应性和学习能力。
项目及技术应用场景
此项目非常适合于那些希望探索强化学习、神经进化策略和无监督学习结合的人。它的应用场景广泛,包括但不限于游戏智能体开发、机器人控制、自动决策系统等任何需要从经验中学习的环境。
项目特点
- 简洁高效 - 只需六个神经元就可以实现复杂的Atari游戏控制。
- 可复现性 - 提供完整的源代码,方便研究者进行实验验证和二次开发。
- 强大库依赖 - 利用OpenAI Gym和GVGAI_GYM,提供多样的环境选择。
- 灵活扩展 - 支持多种进化策略,可以根据需求调整或添加新的算法。
要尝试该项目,只需安装必要的依赖并按照提供的说明执行代码即可开始你的探索之旅。无论你是研究人员还是对机器学习感兴趣的开发者,这个项目都值得你深入挖掘,体验神经进化的魅力。
许可证: MIT
引用: 查看项目README文件获取相关论文和库的完整引用信息。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00