首页
/ Apache Arrow DataFusion中Aggregate分组表达式重复问题解析

Apache Arrow DataFusion中Aggregate分组表达式重复问题解析

2025-06-14 14:07:12作者:霍妲思

在Apache Arrow DataFusion项目中发现了一个关于Substrait计划解析的有趣问题,当聚合操作中包含重复的分组表达式时,系统无法正确生成输出列。这个问题虽然看似简单,但涉及到查询计划解析和执行的底层机制,值得我们深入探讨。

问题本质

问题的核心在于当Aggregate操作的分组表达式列表中存在完全相同的表达式时,DataFusion无法正确处理这种情况。根据Substrait规范,Aggregate操作的输出列应该按照分组表达式声明顺序排列,后跟度量表达式。但在实际实现中,当遇到重复的分组表达式时,系统会丢失部分输出列。

问题复现

让我们看一个具体的例子。考虑以下Substrait计划:

{
  "relations": [
    {
      "root": {
        "input": {
          "aggregate": {
            "input": {
              "read": {
                "namedTable": {
                  "names": ["data"]
                }
              }
            },
            "groupings": [
              {
                "groupingExpressions": [
                  {"literal": {"i32": 1}},
                  {"literal": {"i32": 1}}
                ]
              }
            ],
            "measures": []
          }
        },
        "names": ["grouping_col_1", "grouping_col_2"]
      }
    }
  ]
}

这个计划定义了一个简单的聚合操作,对表"data"进行分组,使用两个相同的字面量表达式(值都为1)作为分组键。按照Substrait规范,输出应该包含两列:"grouping_col_1"和"grouping_col_2",但实际上系统无法正确处理这种情况。

技术背景

在SQL查询处理中,聚合操作(Aggregate)是一个核心操作,它根据指定的分组表达式将数据分组,然后对每个组应用聚合函数。Substrait作为一种跨系统的查询计划表示格式,定义了Aggregate操作的标准结构。

在DataFusion的实现中,当解析Substrait计划时,系统需要将逻辑计划转换为物理计划。在这个过程中,分组表达式的处理尤为重要,因为它们决定了数据的组织方式和最终结果的列结构。

问题分析

问题的根源在于DataFusion在构建输出列时,可能使用了某种基于表达式哈希的去重机制,导致相同的表达式被误认为冗余而被移除。虽然在实际查询中,使用完全相同的表达式作为分组键确实没有实际意义,但从规范角度讲,系统应该能够正确处理这种情况。

解决方案探讨

针对这个问题,可以考虑以下几种解决方案:

  1. 表达式包装方案:在解析阶段自动为Aggregate操作添加一个Project操作,显式地复制缺失的列。这种方法保持了原始计划的完整性,同时确保输出列的正确性。

  2. 规范实施方案:严格遵循Substrait规范,确保所有分组表达式无论是否重复,都能在输出中得到体现。这需要修改表达式处理的内部逻辑。

  3. 验证警告方案:在计划解析阶段检测重复的分组表达式,发出警告或错误信息,提示用户优化查询。

从工程实践角度看,第一种方案最为稳健,它既保持了兼容性,又不会影响查询执行的正确性。

实际影响

这个问题虽然看似边界情况,但在某些自动生成的查询计划中可能出现。特别是当使用Substrait-Spark等系统生成计划时,可能会产生这种包含重复表达式的计划。因此,DataFusion作为查询执行引擎,应该具备处理这种计划的能力。

最佳实践建议

对于开发者而言,在处理聚合操作时应注意:

  1. 在构建查询计划时尽量避免使用完全相同的分组表达式
  2. 如果必须处理来自外部系统的计划,应考虑添加预处理步骤来规范化分组表达式
  3. 在实现查询计划解析时,应充分考虑各种边界情况,确保规范的完整支持

总结

这个问题的发现和解决过程展示了查询引擎开发中的一些重要考量。作为DataFusion这样的高性能查询引擎,正确处理各种边界情况对于保证系统的健壮性和兼容性至关重要。通过深入分析这个问题,我们不仅解决了具体的技术挑战,也为类似问题的处理提供了参考模式。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5