首页
/ Apache Arrow DataFusion中Aggregate分组表达式重复问题解析

Apache Arrow DataFusion中Aggregate分组表达式重复问题解析

2025-06-14 14:07:12作者:霍妲思

在Apache Arrow DataFusion项目中发现了一个关于Substrait计划解析的有趣问题,当聚合操作中包含重复的分组表达式时,系统无法正确生成输出列。这个问题虽然看似简单,但涉及到查询计划解析和执行的底层机制,值得我们深入探讨。

问题本质

问题的核心在于当Aggregate操作的分组表达式列表中存在完全相同的表达式时,DataFusion无法正确处理这种情况。根据Substrait规范,Aggregate操作的输出列应该按照分组表达式声明顺序排列,后跟度量表达式。但在实际实现中,当遇到重复的分组表达式时,系统会丢失部分输出列。

问题复现

让我们看一个具体的例子。考虑以下Substrait计划:

{
  "relations": [
    {
      "root": {
        "input": {
          "aggregate": {
            "input": {
              "read": {
                "namedTable": {
                  "names": ["data"]
                }
              }
            },
            "groupings": [
              {
                "groupingExpressions": [
                  {"literal": {"i32": 1}},
                  {"literal": {"i32": 1}}
                ]
              }
            ],
            "measures": []
          }
        },
        "names": ["grouping_col_1", "grouping_col_2"]
      }
    }
  ]
}

这个计划定义了一个简单的聚合操作,对表"data"进行分组,使用两个相同的字面量表达式(值都为1)作为分组键。按照Substrait规范,输出应该包含两列:"grouping_col_1"和"grouping_col_2",但实际上系统无法正确处理这种情况。

技术背景

在SQL查询处理中,聚合操作(Aggregate)是一个核心操作,它根据指定的分组表达式将数据分组,然后对每个组应用聚合函数。Substrait作为一种跨系统的查询计划表示格式,定义了Aggregate操作的标准结构。

在DataFusion的实现中,当解析Substrait计划时,系统需要将逻辑计划转换为物理计划。在这个过程中,分组表达式的处理尤为重要,因为它们决定了数据的组织方式和最终结果的列结构。

问题分析

问题的根源在于DataFusion在构建输出列时,可能使用了某种基于表达式哈希的去重机制,导致相同的表达式被误认为冗余而被移除。虽然在实际查询中,使用完全相同的表达式作为分组键确实没有实际意义,但从规范角度讲,系统应该能够正确处理这种情况。

解决方案探讨

针对这个问题,可以考虑以下几种解决方案:

  1. 表达式包装方案:在解析阶段自动为Aggregate操作添加一个Project操作,显式地复制缺失的列。这种方法保持了原始计划的完整性,同时确保输出列的正确性。

  2. 规范实施方案:严格遵循Substrait规范,确保所有分组表达式无论是否重复,都能在输出中得到体现。这需要修改表达式处理的内部逻辑。

  3. 验证警告方案:在计划解析阶段检测重复的分组表达式,发出警告或错误信息,提示用户优化查询。

从工程实践角度看,第一种方案最为稳健,它既保持了兼容性,又不会影响查询执行的正确性。

实际影响

这个问题虽然看似边界情况,但在某些自动生成的查询计划中可能出现。特别是当使用Substrait-Spark等系统生成计划时,可能会产生这种包含重复表达式的计划。因此,DataFusion作为查询执行引擎,应该具备处理这种计划的能力。

最佳实践建议

对于开发者而言,在处理聚合操作时应注意:

  1. 在构建查询计划时尽量避免使用完全相同的分组表达式
  2. 如果必须处理来自外部系统的计划,应考虑添加预处理步骤来规范化分组表达式
  3. 在实现查询计划解析时,应充分考虑各种边界情况,确保规范的完整支持

总结

这个问题的发现和解决过程展示了查询引擎开发中的一些重要考量。作为DataFusion这样的高性能查询引擎,正确处理各种边界情况对于保证系统的健壮性和兼容性至关重要。通过深入分析这个问题,我们不仅解决了具体的技术挑战,也为类似问题的处理提供了参考模式。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8