Physt 项目教程
2024-09-19 02:36:17作者:邓越浪Henry
1. 项目介绍
Physt 是一个 Python 库,旨在提供丰富且灵活的直方图功能。它不仅支持从 NumPy、Dask 数组、Pandas 和 Polars 系列/数据框、Xarray 数据集等多种数据源创建直方图,还提供了强大的可视化工具,支持 Matplotlib、Vega 和 Plotly 等多种绘图后端。Physt 的设计目标是让用户能够轻松地创建、操作和可视化直方图,适用于各种数据分析场景。
2. 项目快速启动
安装
你可以通过 pip 或 conda 安装 Physt:
pip install physt
或
conda install -c janpipek physt
快速示例
以下是一个简单的示例,展示如何使用 Physt 创建和绘制一维直方图:
from physt import h1
# 创建样本数据
heights = [160, 155, 156, 198, 177, 168, 191, 183, 184, 179, 178, 172, 173, 175, 172, 177, 176, 175, 174, 173, 174, 175, 177, 169, 168, 164, 175, 188, 178, 174, 173, 181, 185, 166, 162, 163, 171, 165, 180, 189, 166, 163, 172, 173, 174, 183, 184, 161, 162, 168, 169, 174, 176, 170, 169, 165]
# 创建直方图
hist = h1(heights, 10)
# 添加一个遗漏的值
hist << 190
# 绘制直方图
hist.plot()
3. 应用案例和最佳实践
应用案例 1:二维直方图
Physt 支持创建二维直方图,适用于分析两个变量之间的关系。以下是一个使用 Seaborn 数据集的示例:
from physt import h2
import seaborn as sns
# 加载 Iris 数据集
iris = sns.load_dataset('iris')
# 创建二维直方图
iris_hist = h2(iris["sepal_length"], iris["sepal_width"], "pretty", bin_count=[12, 7], name="Iris")
# 绘制直方图
iris_hist.plot(show_zero=False, cmap="gray_r", show_values=True)
应用案例 2:三维方向直方图
Physt 还支持创建三维方向直方图,适用于分析球坐标系中的数据分布:
import numpy as np
from physt import special_histograms
# 生成样本数据
data = np.empty((1000, 3))
data[:, 0] = np.random.normal(0, 1, 1000)
data[:, 1] = np.random.normal(0, 1.3, 1000)
data[:, 2] = np.random.normal(1.6, 0.6, 1000)
# 创建球坐标系直方图
h = special_histograms.spherical(data)
# 绘制球坐标系投影
h.projection("theta", "phi").plot_globe(density=True, figsize=(7, 7), cmap="rainbow")
4. 典型生态项目
Physt 作为一个灵活且功能强大的直方图库,可以与其他数据处理和可视化库结合使用,形成强大的数据分析生态系统。以下是一些典型的生态项目:
- NumPy: 用于数据处理和数组操作。
- Pandas: 用于数据分析和处理表格数据。
- Matplotlib: 用于静态数据可视化。
- Plotly: 用于交互式数据可视化。
- Seaborn: 用于统计数据可视化。
- Xarray: 用于处理多维数据集。
- Dask: 用于处理大规模数据集。
通过结合这些工具,Physt 可以帮助用户在各种数据分析任务中高效地创建和分析直方图。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430