在LMDeploy中部署自定义视觉语言模型的技术实践
2025-06-04 00:30:57作者:龚格成
背景介绍
LMDeploy作为一个高效的大模型推理框架,支持多种视觉语言模型的部署。近期有开发者尝试基于Qwen2模型架构,参照InternLM-XComposer2的PLoRA方式训练了自定义视觉语言模型(VL),但在部署过程中遇到了技术挑战。
核心问题分析
PLoRA(Parameter-Efficient Low-Rank Adaptation)是一种高效的模型微调方法,在视觉语言模型中应用时需要处理特殊的图像掩码(im_mask)。在LMDeploy中部署这类模型的主要难点在于:
- 模型权重加载机制的特殊性
- 视觉编码器和语言模型组件的协同工作
- PLoRA特有的im_mask处理逻辑
技术解决方案
TurboMind后端支持
LMDeploy的TurboMind后端已经原生支持PLoRA计算,其中的im_mask是自动计算的。要实现自定义模型的部署,关键在于如何让TurboMind正确加载修改后的模型。
模型加载策略
部署过程可分为两个关键部分:
-
语言模型部分加载:
- 通过模型架构(arch)映射来加载权重
- 建议将自定义模型伪装成XComposer2模型
- 需要调整权重名称和配置文件(config)
- 特别注意PLoRA的配置参数设置
-
视觉部分加载:
- 复用Transformers的加载机制
- 根据架构映射确定具体的视觉组件加载逻辑
- 可能需要调整视觉编码器的架构映射关系
潜在冲突处理
在实际操作中可能会遇到架构映射冲突的问题,特别是当需要修改config中的arch属性时,这会影响视觉组件的加载逻辑。建议开发者:
- 谨慎调整架构映射关系
- 保持视觉编码器和语言模型组件的一致性
- 必要时修改视觉加载的映射逻辑
实施建议
- 仔细研究XComposer2的模型结构和PLoRA实现细节
- 分步骤验证语言模型和视觉组件的独立加载
- 逐步整合两个组件,注意处理可能的架构冲突
- 充分利用LMDeploy提供的调试工具验证模型加载的正确性
总结
在LMDeploy中部署自定义的视觉语言模型需要深入理解框架的模型加载机制和PLoRA的特殊处理逻辑。通过合理的架构伪装和组件映射调整,开发者可以成功部署基于Qwen2的自定义模型。这一过程虽然具有一定技术复杂度,但遵循系统化的方法可以有效地解决问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178