首页
/ LMDeploy项目部署GLM4V-9B模型在NPU上的技术实践

LMDeploy项目部署GLM4V-9B模型在NPU上的技术实践

2025-06-04 23:36:00作者:董宙帆

在深度学习模型部署领域,将视觉语言多模态模型部署到专用加速硬件上是一个具有挑战性的任务。本文将以LMDeploy项目为例,探讨GLM4V-9B这一大型视觉语言模型在NPU上的部署实践。

环境准备与问题分析

在尝试将GLM4V-9B模型部署到NPU环境时,开发者遇到了几个关键问题。首先,系统提示无法找到模型定义文件modeling_chatglm.py,这通常表明模型加载路径配置存在问题。其次,系统尝试从HuggingFace仓库自动下载相关文件但失败,这可能是由于网络连接问题或模型版本不匹配导致的。

从错误日志中可以观察到,系统环境配置了Ascend NPU设备,使用的是PyTorch 2.1.0版本和LMDeploy 0.6.0。值得注意的是,当前环境没有启用CUDA,而是专门为NPU优化配置的。

解决方案与技术要点

根据LMDeploy项目的最新进展,从0.6.3版本开始已经正式支持GLM4V-9B模型的部署。同时,配套的深度学习推理框架dlinfer 0.1.2版本也提供了相应的支持。这意味着开发者可以通过升级工具链来解决兼容性问题。

在具体部署过程中,需要注意以下几个技术要点:

  1. 模型路径验证:确保指定的模型路径包含完整的模型文件和配置文件,特别是modeling_chatglm.py等关键定义文件。

  2. 网络连接检查:如果系统需要从远程仓库获取模型文件,需要确保网络连接正常,或者提前将模型文件下载到本地。

  3. 版本兼容性:使用LMDeploy 0.6.3或更高版本,配合dlinfer 0.1.2版本,以获得最佳的NPU支持。

  4. 设备配置:正确设置ASCEND_RT_VISIBLE_DEVICES环境变量,确保模型能够正确分配到NPU设备上运行。

最佳实践建议

对于希望在NPU上部署GLM4V-9B模型的开发者,建议遵循以下步骤:

  1. 首先确认本地已下载完整的模型文件,包括配置文件、模型权重和必要的Python定义文件。

  2. 升级LMDeploy到0.6.3或更高版本,确保框架支持最新的模型架构。

  3. 使用专门的NPU优化版PyTorch,并正确配置环境变量。

  4. 在部署命令中明确指定后端为pytorch,设备类型为ascend,并正确设置聊天模板路径。

  5. 对于生产环境,建议预先测试模型的推理性能和准确性,确保满足业务需求。

通过以上技术实践,开发者可以成功地将GLM4V-9B这一先进的多模态模型部署到NPU硬件上,充分发挥专用加速硬件的性能优势。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8