LMDeploy项目部署GLM4V-9B模型在NPU上的技术实践
在深度学习模型部署领域,将视觉语言多模态模型部署到专用加速硬件上是一个具有挑战性的任务。本文将以LMDeploy项目为例,探讨GLM4V-9B这一大型视觉语言模型在NPU上的部署实践。
环境准备与问题分析
在尝试将GLM4V-9B模型部署到NPU环境时,开发者遇到了几个关键问题。首先,系统提示无法找到模型定义文件modeling_chatglm.py,这通常表明模型加载路径配置存在问题。其次,系统尝试从HuggingFace仓库自动下载相关文件但失败,这可能是由于网络连接问题或模型版本不匹配导致的。
从错误日志中可以观察到,系统环境配置了Ascend NPU设备,使用的是PyTorch 2.1.0版本和LMDeploy 0.6.0。值得注意的是,当前环境没有启用CUDA,而是专门为NPU优化配置的。
解决方案与技术要点
根据LMDeploy项目的最新进展,从0.6.3版本开始已经正式支持GLM4V-9B模型的部署。同时,配套的深度学习推理框架dlinfer 0.1.2版本也提供了相应的支持。这意味着开发者可以通过升级工具链来解决兼容性问题。
在具体部署过程中,需要注意以下几个技术要点:
-
模型路径验证:确保指定的模型路径包含完整的模型文件和配置文件,特别是modeling_chatglm.py等关键定义文件。
-
网络连接检查:如果系统需要从远程仓库获取模型文件,需要确保网络连接正常,或者提前将模型文件下载到本地。
-
版本兼容性:使用LMDeploy 0.6.3或更高版本,配合dlinfer 0.1.2版本,以获得最佳的NPU支持。
-
设备配置:正确设置ASCEND_RT_VISIBLE_DEVICES环境变量,确保模型能够正确分配到NPU设备上运行。
最佳实践建议
对于希望在NPU上部署GLM4V-9B模型的开发者,建议遵循以下步骤:
-
首先确认本地已下载完整的模型文件,包括配置文件、模型权重和必要的Python定义文件。
-
升级LMDeploy到0.6.3或更高版本,确保框架支持最新的模型架构。
-
使用专门的NPU优化版PyTorch,并正确配置环境变量。
-
在部署命令中明确指定后端为pytorch,设备类型为ascend,并正确设置聊天模板路径。
-
对于生产环境,建议预先测试模型的推理性能和准确性,确保满足业务需求。
通过以上技术实践,开发者可以成功地将GLM4V-9B这一先进的多模态模型部署到NPU硬件上,充分发挥专用加速硬件的性能优势。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00