LMDeploy项目部署GLM4V-9B模型在NPU上的技术实践
在深度学习模型部署领域,将视觉语言多模态模型部署到专用加速硬件上是一个具有挑战性的任务。本文将以LMDeploy项目为例,探讨GLM4V-9B这一大型视觉语言模型在NPU上的部署实践。
环境准备与问题分析
在尝试将GLM4V-9B模型部署到NPU环境时,开发者遇到了几个关键问题。首先,系统提示无法找到模型定义文件modeling_chatglm.py,这通常表明模型加载路径配置存在问题。其次,系统尝试从HuggingFace仓库自动下载相关文件但失败,这可能是由于网络连接问题或模型版本不匹配导致的。
从错误日志中可以观察到,系统环境配置了Ascend NPU设备,使用的是PyTorch 2.1.0版本和LMDeploy 0.6.0。值得注意的是,当前环境没有启用CUDA,而是专门为NPU优化配置的。
解决方案与技术要点
根据LMDeploy项目的最新进展,从0.6.3版本开始已经正式支持GLM4V-9B模型的部署。同时,配套的深度学习推理框架dlinfer 0.1.2版本也提供了相应的支持。这意味着开发者可以通过升级工具链来解决兼容性问题。
在具体部署过程中,需要注意以下几个技术要点:
-
模型路径验证:确保指定的模型路径包含完整的模型文件和配置文件,特别是modeling_chatglm.py等关键定义文件。
-
网络连接检查:如果系统需要从远程仓库获取模型文件,需要确保网络连接正常,或者提前将模型文件下载到本地。
-
版本兼容性:使用LMDeploy 0.6.3或更高版本,配合dlinfer 0.1.2版本,以获得最佳的NPU支持。
-
设备配置:正确设置ASCEND_RT_VISIBLE_DEVICES环境变量,确保模型能够正确分配到NPU设备上运行。
最佳实践建议
对于希望在NPU上部署GLM4V-9B模型的开发者,建议遵循以下步骤:
-
首先确认本地已下载完整的模型文件,包括配置文件、模型权重和必要的Python定义文件。
-
升级LMDeploy到0.6.3或更高版本,确保框架支持最新的模型架构。
-
使用专门的NPU优化版PyTorch,并正确配置环境变量。
-
在部署命令中明确指定后端为pytorch,设备类型为ascend,并正确设置聊天模板路径。
-
对于生产环境,建议预先测试模型的推理性能和准确性,确保满足业务需求。
通过以上技术实践,开发者可以成功地将GLM4V-9B这一先进的多模态模型部署到NPU硬件上,充分发挥专用加速硬件的性能优势。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









