XTuner训练Llama3-8B模型时Loss异常问题分析与解决方案
2025-06-13 06:51:58作者:邬祺芯Juliet
问题现象
在使用XTuner项目训练Llama3-8B模型时,开发者遇到了训练过程中Loss值变为NaN的问题。具体表现为:
- 训练初期(前10个step)Loss值正常(1.8250)
- 从第20个step开始,Loss值变为NaN
- 最终导致模型生成阶段出现RuntimeError,提示概率张量包含inf或nan值
问题分析
这种训练过程中Loss突然变为NaN的现象在大型语言模型训练中并不罕见,通常与以下几个因素有关:
-
数值稳定性问题:当使用混合精度训练时,特别是fp16精度下,容易出现数值下溢或上溢的情况,导致梯度计算异常。
-
优化器配置不当:学习率设置过高或优化器参数配置不合理可能导致参数更新幅度过大,模型参数进入不稳定区域。
-
梯度爆炸:在深度神经网络中,特别是Transformer架构中,梯度可能会在反向传播过程中指数级增长。
-
Deepspeed配置问题:使用Deepspeed的zero2优化阶段时,梯度划分和参数更新策略可能存在特定bug。
解决方案
经过实践验证,有以下几种可行的解决方案:
-
修改精度模式:
- 将模型从默认的fp16精度改为bf16精度
- bf16相比fp16具有更大的动态范围,能更好地保持数值稳定性
- 这是最直接有效的解决方案
-
调整Deepspeed配置:
- 尝试使用zero1或zero3优化阶段替代zero2
- zero2阶段在某些情况下可能存在bug,导致梯度计算异常
-
优化训练参数:
- 适当降低初始学习率
- 增加梯度裁剪阈值
- 使用更稳定的优化器(如AdamW)
最佳实践建议
对于Llama3-8B这类大型模型的微调训练,建议采取以下实践:
-
优先使用bf16精度:在支持bf16的硬件上,始终优先选择bf16而非fp16。
-
分阶段调整学习率:使用学习率预热策略,避免训练初期的大幅度参数更新。
-
监控训练过程:
- 定期检查Loss曲线
- 监控梯度范数
- 设置NaN检测机制
-
逐步扩大batch size:如果遇到显存限制,可考虑使用梯度累积技术而非直接使用大batch。
通过以上措施,可以有效避免训练过程中的数值不稳定问题,确保模型能够顺利收敛。对于XTuner项目中的Llama3-8B模型训练,将精度改为bf16是最为直接有效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247