XTuner训练Llama3-8B模型时Loss异常问题分析与解决方案
2025-06-13 21:18:22作者:邬祺芯Juliet
问题现象
在使用XTuner项目训练Llama3-8B模型时,开发者遇到了训练过程中Loss值变为NaN的问题。具体表现为:
- 训练初期(前10个step)Loss值正常(1.8250)
- 从第20个step开始,Loss值变为NaN
- 最终导致模型生成阶段出现RuntimeError,提示概率张量包含inf或nan值
问题分析
这种训练过程中Loss突然变为NaN的现象在大型语言模型训练中并不罕见,通常与以下几个因素有关:
-
数值稳定性问题:当使用混合精度训练时,特别是fp16精度下,容易出现数值下溢或上溢的情况,导致梯度计算异常。
-
优化器配置不当:学习率设置过高或优化器参数配置不合理可能导致参数更新幅度过大,模型参数进入不稳定区域。
-
梯度爆炸:在深度神经网络中,特别是Transformer架构中,梯度可能会在反向传播过程中指数级增长。
-
Deepspeed配置问题:使用Deepspeed的zero2优化阶段时,梯度划分和参数更新策略可能存在特定bug。
解决方案
经过实践验证,有以下几种可行的解决方案:
-
修改精度模式:
- 将模型从默认的fp16精度改为bf16精度
- bf16相比fp16具有更大的动态范围,能更好地保持数值稳定性
- 这是最直接有效的解决方案
-
调整Deepspeed配置:
- 尝试使用zero1或zero3优化阶段替代zero2
- zero2阶段在某些情况下可能存在bug,导致梯度计算异常
-
优化训练参数:
- 适当降低初始学习率
- 增加梯度裁剪阈值
- 使用更稳定的优化器(如AdamW)
最佳实践建议
对于Llama3-8B这类大型模型的微调训练,建议采取以下实践:
-
优先使用bf16精度:在支持bf16的硬件上,始终优先选择bf16而非fp16。
-
分阶段调整学习率:使用学习率预热策略,避免训练初期的大幅度参数更新。
-
监控训练过程:
- 定期检查Loss曲线
- 监控梯度范数
- 设置NaN检测机制
-
逐步扩大batch size:如果遇到显存限制,可考虑使用梯度累积技术而非直接使用大batch。
通过以上措施,可以有效避免训练过程中的数值不稳定问题,确保模型能够顺利收敛。对于XTuner项目中的Llama3-8B模型训练,将精度改为bf16是最为直接有效的解决方案。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K