Wazuh 4.12.0 Beta 1 Docker部署与测试指南
2025-05-19 23:24:19作者:秋阔奎Evelyn
概述
本文详细介绍了Wazuh安全监控平台4.12.0 Beta 1版本在Docker环境下的部署过程与功能测试。Wazuh作为一个开源的XDR和SIEM解决方案,提供了安全监控、入侵检测和合规性管理等功能。本次测试涵盖了单节点和多节点两种部署模式,验证了系统在容器化环境中的稳定性和功能性。
环境准备
测试环境基于Ubuntu 22.04 LTS系统,配置了4核CPU和8GB内存。Docker环境使用最新稳定版28.1.1,Docker Compose版本为v2.12.2。为确保Wazuh Indexer正常运行,需要调整系统参数:
sysctl -w vm.max_map_count=262144
单节点部署测试
部署流程
- 克隆Wazuh Docker仓库并切换到v4.12.0-beta1分支
- 进入single-node目录
- 配置SSL安全连接
- 启动容器服务
安全连接配置过程会自动创建root CA、管理员凭证、Indexer凭证、Filebeat凭证和Dashboard凭证。启动后,Wazuh各组件将通过Docker Compose编排自动部署。
功能验证
密码修改测试:
- Indexer用户密码修改:通过生成新的密码哈希并更新配置文件实现
- API用户密码修改:修改docker-compose.yml和wazuh.yml配置文件中的API_PASSWORD参数
代理部署测试: 在Amazon Linux 2023系统上部署Wazuh代理,验证了代理与管理器的连接状态和事件上报功能。代理安装命令如下:
curl -o wazuh-agent-4.12.0-1.x86_64.rpm https://packages-dev.wazuh.com/pre-release/yum/wazuh-agent-4.12.0-1.x86_64.rpm
sudo WAZUH_MANAGER='192.168.0.2' rpm -ihv wazuh-agent-4.12.0-1.x86_64.rpm
容器管理测试: 验证了容器的停止、启动和重启操作对系统功能的影响,确认服务在容器重启后能够自动恢复。
多节点部署测试
集群配置
多节点部署包含以下组件:
- 3个Wazuh Indexer节点
- 1个Wazuh Master节点
- 1个Wazuh Worker节点
- 1个Wazuh Dashboard节点
- 1个Nginx负载均衡器
关键验证点
- 集群状态检查:确认所有Indexer节点形成集群并处于GREEN状态
- 密码统一管理:通过securityadmin.sh工具在所有Indexer节点上同步密码变更
- 负载均衡测试:验证通过Nginx的1514端口可以访问Wazuh服务
- 多管理器测试:确认代理可以同时连接到Master和Worker节点
测试结论
所有测试项目均成功通过验证,包括:
- 单节点和多节点部署流程
- 密码修改功能(Indexer用户和API用户)
- 代理注册和事件收集
- 容器生命周期管理(停止/启动/重启)
- 多节点集群的稳定性和数据一致性
测试结果表明,Wazuh 4.12.0 Beta 1在Docker环境中的表现稳定,各项功能符合预期。容器化部署方式简化了Wazuh的安装和配置过程,特别适合快速部署和测试场景。
最佳实践建议
- 生产环境部署时,建议使用持久化存储卷确保数据安全
- 密码复杂度应符合安全要求(8-64字符,包含大小写字母、数字和符号)
- 多节点部署时,确保各节点时间同步
- 监控容器资源使用情况,适时调整资源限制
- 定期备份关键配置文件和安全凭证
通过本次测试,验证了Wazuh 4.12.0 Beta 1在容器化环境中的可靠性和功能性,为后续版本发布提供了质量保证。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869