Stable Diffusion WebUI深度图脚本中Midas 3.1模型加载问题解析
问题现象
在使用Stable Diffusion WebUI的深度图生成脚本时,用户报告了一个特定于Midas 3.1模型的问题。当尝试使用Midas 3.1模型生成深度图时,系统会抛出状态字典加载错误,而其他模型则能正常工作。
错误详情
系统在加载DPTDepthModel模型的状态字典时,检测到了24个意外的键值,这些键值都与模型块的相对位置索引相关。具体错误表现为:
RuntimeError: Error(s) in loading state_dict for DPTDepthModel:
Unexpected key(s) in state_dict: "pretrained.model.blocks.0.attn.relative_position_index", "pretrained.model.blocks.1.attn.relative_position_index", ...
问题根源分析
这个问题通常出现在模型架构与预训练权重不匹配的情况下。具体来说:
-
模型版本不兼容:Midas 3.1模型使用了较新版本的架构,包含了相对位置索引参数,而当前实现的DPTDepthModel可能基于较旧版本,没有这些参数。
-
权重文件问题:下载的预训练权重文件可能已损坏或不完整。
-
依赖库版本冲突:虽然用户提到已安装并更新了timm库,但可能存在其他依赖库的版本不兼容问题。
解决方案
临时解决方案
-
使用旧版本脚本:如用户报告,降级到0.9.2版本可以解决状态字典加载问题,但可能会引入其他问题如段错误。
-
启动参数调整:添加
--disable-safe-unpickle
命令行参数可以解决某些情况下模型加载的安全限制问题。
长期解决方案
-
更新模型实现:脚本维护者需要更新DPTDepthModel的实现,以支持Midas 3.1模型的新特性,特别是相对位置索引参数。
-
模型权重适配:可以考虑创建一个适配层,过滤掉不需要的相对位置索引参数,或者为这些参数提供默认值。
-
依赖管理:确保所有相关库(如timm、torch等)的版本与Midas 3.1模型要求完全兼容。
技术背景
深度估计模型如Midas使用卷积神经网络或Transformer架构来预测图像中每个像素的深度值。DPT(Depth Prediction Transformer)是Midas系列中使用的一种特殊架构,它结合了视觉Transformer和密集预测头。
在较新版本的Midas中,模型引入了相对位置索引来增强Transformer块的位置感知能力,这是导致状态字典不匹配的主要原因。
最佳实践建议
-
在使用深度图生成功能前,先测试不同模型版本以确保兼容性。
-
定期检查并更新相关依赖库,但要注意版本兼容性。
-
对于生产环境,建议固定特定版本的脚本和模型,以避免意外更新带来的兼容性问题。
-
遇到类似问题时,可以尝试清除模型缓存并重新下载权重文件。
通过理解这些技术细节和解决方案,用户可以更好地诊断和解决在使用Stable Diffusion WebUI深度图脚本时遇到的各种模型加载问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









