Fast-ACVNet 使用指南
项目概述
Fast-ACVNet 是一个旨在提供高精度且实时的立体匹配解决方案的开源项目,发表于 TPAMI 2023。该技术通过快速注意力连接体积(Fast Attention Concatenation Volume)优化成本体构建,以实现更高效的冗余信息抑制,从而提升立体匹配的性能。
目录结构及介绍
Fast-ACVNet 的项目结构组织如下:
Fast-ACVNet/
│
├── datasets # 数据集处理相关文件
│
├── demo # 示例代码或脚本
│
├── imgs # 可能存放示例图像或结果图
│
├── models # 模型定义文件夹
│
├── utils # 工具函数集合
│
├── LICENSE # 开源许可证文件
├── README.md # 项目说明文件,包含了基本的项目信息和快速入门指导
│
├── main_kitti.py # 在KITTI数据集上进行训练或评估的入口脚本
├── main_sceneflow.py # 在Scene Flow数据集上的训练或评估脚本
├── save_disp.py # 保存视差图的脚本
│
└── 其他必要的Python脚本或配置文件
启动文件介绍
main_kitti.py 和 main_sceneflow.py
-
main_kitti.py: 此文件是用于在著名的KITTI立体匹配数据集上训练和测试Fast-ACVNet模型的主程序。它允许用户加载预训练模型或者从头开始训练,并在KITTI数据集上进行评估。
-
main_sceneflow.py: 类似于
main_kitti.py,但专为Scene Flow数据集设计,支持训练和评估过程,确保模型能在不同的立体匹配场景中泛化。
配置文件介绍
虽然在提供的信息中没有明确指出特定的配置文件路径或格式,配置通常是通过命令行参数或内部脚本中的变量来设定的。用户在运行main_kitti.py或main_sceneflow.py时,可能需要调整如学习率、批次大小、训练轮次等参数,这些设置分散在代码中或作为脚本的命令行参数被传递。例如,训练时指定日志目录、是否仅训练注意力权重生成网络,以及加载预训练模型的路径等,都是通过脚本参数完成的。
为了自定义配置,用户需仔细阅读脚本内或伴随文档中关于如何修改这些参数的说明。高级用户还可以考虑将常用设置抽象到外部配置文件中,尽管该项目未直接提供一个现成的配置文件模板,这通常涉及到编辑Python字典或 YAML 文件等方式来自定义实验设置。
请注意,实际操作前应创建并激活虚拟环境,安装依赖项,并遵循项目README.md中详细列出的数据准备和环境设置步骤。这只是一个概览性指南,具体操作应参照项目最新版的官方文档或README.md文件。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00