Fast-TransX 开源项目安装与使用指南
2024-09-21 13:02:17作者:裘晴惠Vivianne
Fast-TransX 是一个专为提升知识表示学习效率设计的开源项目,特别是在实现TransE及其扩展模型方面,如TransH、TransR、TransD、TranSparse和PTransE。该项目在提高计算速度的同时保持了模型的有效性,特别适合于大规模知识图谱的建模。以下是关于如何搭建和使用Fast-TransX的基本指导。
1. 项目目录结构及介绍
Fast-TransX的仓库结构清晰,主要包含以下关键组件:
src: 包含核心代码,如transX.cpp, 这里实现了模型的训练和推理逻辑。data: 可能存放示例数据或者数据处理脚本,用于演示如何准备数据。scripts或examples: 提供快速测试或训练脚本的例子,比如用于FB15K-237的数据处理脚本。LICENSE: 许可文件,说明了项目的使用条款,遵循MIT协议。README.md: 包含项目简介、安装步骤、快速使用指南等重要信息。
2. 项目的启动文件介绍
Fast-TransX的主要执行入口通常是编译后的命令行程序,例如通过transX或其特定的训练脚本。要启动训练或测试过程,你需要先编译源代码。基本的启动流程涉及以下命令:
- 编译主程序:
g++ transX.cpp -o transX -pthread -O3 -march=native - 运行训练(以TransE为例):
./transX -input 数据路径 -output 结果保存路径 -model TransE -dim 尺度大小 -lr 学习率 ...
3. 项目的配置文件介绍
Fast-TransX不像传统项目那样依赖单独的配置文件,而是通过命令行参数指定训练和模型配置。这意味着配置项(如模型维度、学习速率、迭代次数等)是在运行时通过参数提供的。尽管如此,可以创建脚本来组织这些参数,以达到配置文件的效果,例如在examples目录下的脚本通常会预先定义好一组参数集合。
示例配置参数解析:
-size: 实体嵌入的维度。-alpha: 学习率。-margin: 用于最大间隔损失的边界值。-thread: 并发使用的线程数,这对于加速训练至关重要。-epochs: 训练轮次。-input和-output: 分别指定了数据输入目录和结果输出目录。
创建自定义配置脚本示例:
假设你要创建一个简单的脚本以定制TransE的训练过程,可以在你的工作目录下这样编写一个bash脚本:
#!/bin/bash
# 自定义训练参数
MODEL="TransE"
DIM=200
LR=0.1
EPOCHS=1000
THREADS=8
./transX \
-model $MODEL \
-dim $DIM \
-lr $LR \
-epochs $EPOCHS \
-thread $THREADS \
-input 数据集路径 \
-output 结果保存路径
请注意,实际使用时需替换“数据集路径”和“结果保存路径”为具体的文件路径,并确保你已经正确设置了数据格式,符合项目要求(即entity2id.txt, relation2id.txt, train2id.txt等)。在正式训练之前,确保已正确编译项目源代码并理解各参数的意义。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
663
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259