Fast-TransX 开源项目安装与使用指南
2024-09-21 18:30:18作者:裘晴惠Vivianne
Fast-TransX 是一个专为提升知识表示学习效率设计的开源项目,特别是在实现TransE及其扩展模型方面,如TransH、TransR、TransD、TranSparse和PTransE。该项目在提高计算速度的同时保持了模型的有效性,特别适合于大规模知识图谱的建模。以下是关于如何搭建和使用Fast-TransX的基本指导。
1. 项目目录结构及介绍
Fast-TransX的仓库结构清晰,主要包含以下关键组件:
src: 包含核心代码,如transX.cpp, 这里实现了模型的训练和推理逻辑。data: 可能存放示例数据或者数据处理脚本,用于演示如何准备数据。scripts或examples: 提供快速测试或训练脚本的例子,比如用于FB15K-237的数据处理脚本。LICENSE: 许可文件,说明了项目的使用条款,遵循MIT协议。README.md: 包含项目简介、安装步骤、快速使用指南等重要信息。
2. 项目的启动文件介绍
Fast-TransX的主要执行入口通常是编译后的命令行程序,例如通过transX或其特定的训练脚本。要启动训练或测试过程,你需要先编译源代码。基本的启动流程涉及以下命令:
- 编译主程序:
g++ transX.cpp -o transX -pthread -O3 -march=native - 运行训练(以TransE为例):
./transX -input 数据路径 -output 结果保存路径 -model TransE -dim 尺度大小 -lr 学习率 ...
3. 项目的配置文件介绍
Fast-TransX不像传统项目那样依赖单独的配置文件,而是通过命令行参数指定训练和模型配置。这意味着配置项(如模型维度、学习速率、迭代次数等)是在运行时通过参数提供的。尽管如此,可以创建脚本来组织这些参数,以达到配置文件的效果,例如在examples目录下的脚本通常会预先定义好一组参数集合。
示例配置参数解析:
-size: 实体嵌入的维度。-alpha: 学习率。-margin: 用于最大间隔损失的边界值。-thread: 并发使用的线程数,这对于加速训练至关重要。-epochs: 训练轮次。-input和-output: 分别指定了数据输入目录和结果输出目录。
创建自定义配置脚本示例:
假设你要创建一个简单的脚本以定制TransE的训练过程,可以在你的工作目录下这样编写一个bash脚本:
#!/bin/bash
# 自定义训练参数
MODEL="TransE"
DIM=200
LR=0.1
EPOCHS=1000
THREADS=8
./transX \
-model $MODEL \
-dim $DIM \
-lr $LR \
-epochs $EPOCHS \
-thread $THREADS \
-input 数据集路径 \
-output 结果保存路径
请注意,实际使用时需替换“数据集路径”和“结果保存路径”为具体的文件路径,并确保你已经正确设置了数据格式,符合项目要求(即entity2id.txt, relation2id.txt, train2id.txt等)。在正式训练之前,确保已正确编译项目源代码并理解各参数的意义。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136