Fury Java序列化框架中的Map序列化性能优化实践
2025-06-25 21:36:52作者:盛欣凯Ernestine
背景介绍
Apache Fury是一个高性能的跨语言序列化框架,在Java版本中提供了丰富的序列化功能。在使用过程中,开发者发现当自定义Map序列化器时,如果重用MapSerializer实例会导致序列化异常,同时框架初始化时间过长的问题。
问题分析
在自定义序列化器中重用MapSerializer实例时,会出现IndexOutOfBoundsException异常。这是因为Fury内部为了处理嵌套Map序列化的情况,会在每次序列化/反序列化后将keySerializer设置为null。如果不了解这一机制,直接重用实例就会导致序列化失败。
同时,框架初始化时间过长的问题主要源于SLF4J日志系统的初始化耗时。通过性能分析发现,日志系统的初始化占据了大部分时间,特别是在有复杂日志配置的环境中。
解决方案
Map序列化器重用问题
正确的做法是在每次write/read操作时重新设置keySerializer:
public static class StorageSerializer extends Serializer<Storage> {
private final MapSerializers.HashMapSerializer mapSerializer;
private final KeySerializer keySerializer;
public StorageSerializer(Fury fury) {
super(fury, Storage.class);
this.mapSerializer = new MapSerializers.HashMapSerializer(fury);
this.keySerializer = new KeySerializer(fury);
}
@Override
public void write(MemoryBuffer buffer, Storage value) {
mapSerializer.setKeySerializer(keySerializer);
mapSerializer.write(buffer, value.map());
}
@Override
public Storage read(MemoryBuffer buffer) {
mapSerializer.setKeySerializer(keySerializer);
HashMap<Key, String> map = mapSerializer.read(buffer);
return new Storage(map);
}
}
性能优化
针对初始化耗时问题,Fury社区已经进行了优化:
- 统一使用Fury内部的LoggerFactory,避免SLF4J的初始化开销
- 优化了类加载和反射相关的初始化逻辑
- 减少了不必要的静态初始化块
最佳实践
-
自定义序列化器设计:
- 对于Map等集合类型的序列化,建议将序列化器实例作为字段保存
- 但需要在每次操作时重新设置元素序列化器
- 考虑使用专门优化的Map子类和对应的序列化器
-
性能调优:
- 在频繁创建Fury实例的场景下,考虑复用实例
- 对于生产环境,建议使用最新版本,已包含多项性能优化
- 可以禁用或简化日志配置来减少初始化时间
-
扩展性考虑:
- 对于特殊键类型的Map,可以借鉴StringKeyMapSerializer的实现思路
- 考虑实现自定义的Map子类来获得更好的序列化性能
总结
Fury框架在Map序列化方面提供了灵活的扩展机制,但需要开发者理解其内部工作机制才能正确使用。通过本文介绍的最佳实践,开发者可以避免常见的陷阱,同时获得更好的性能表现。随着社区的持续优化,Fury正在成为一个更加成熟和高效的选择。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
560
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
152
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
128
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
731
70