Fury Java序列化框架中的Map序列化性能优化实践
2025-06-25 01:56:34作者:盛欣凯Ernestine
背景介绍
Apache Fury是一个高性能的跨语言序列化框架,在Java版本中提供了丰富的序列化功能。在使用过程中,开发者发现当自定义Map序列化器时,如果重用MapSerializer实例会导致序列化异常,同时框架初始化时间过长的问题。
问题分析
在自定义序列化器中重用MapSerializer实例时,会出现IndexOutOfBoundsException异常。这是因为Fury内部为了处理嵌套Map序列化的情况,会在每次序列化/反序列化后将keySerializer设置为null。如果不了解这一机制,直接重用实例就会导致序列化失败。
同时,框架初始化时间过长的问题主要源于SLF4J日志系统的初始化耗时。通过性能分析发现,日志系统的初始化占据了大部分时间,特别是在有复杂日志配置的环境中。
解决方案
Map序列化器重用问题
正确的做法是在每次write/read操作时重新设置keySerializer:
public static class StorageSerializer extends Serializer<Storage> {
private final MapSerializers.HashMapSerializer mapSerializer;
private final KeySerializer keySerializer;
public StorageSerializer(Fury fury) {
super(fury, Storage.class);
this.mapSerializer = new MapSerializers.HashMapSerializer(fury);
this.keySerializer = new KeySerializer(fury);
}
@Override
public void write(MemoryBuffer buffer, Storage value) {
mapSerializer.setKeySerializer(keySerializer);
mapSerializer.write(buffer, value.map());
}
@Override
public Storage read(MemoryBuffer buffer) {
mapSerializer.setKeySerializer(keySerializer);
HashMap<Key, String> map = mapSerializer.read(buffer);
return new Storage(map);
}
}
性能优化
针对初始化耗时问题,Fury社区已经进行了优化:
- 统一使用Fury内部的LoggerFactory,避免SLF4J的初始化开销
- 优化了类加载和反射相关的初始化逻辑
- 减少了不必要的静态初始化块
最佳实践
-
自定义序列化器设计:
- 对于Map等集合类型的序列化,建议将序列化器实例作为字段保存
- 但需要在每次操作时重新设置元素序列化器
- 考虑使用专门优化的Map子类和对应的序列化器
-
性能调优:
- 在频繁创建Fury实例的场景下,考虑复用实例
- 对于生产环境,建议使用最新版本,已包含多项性能优化
- 可以禁用或简化日志配置来减少初始化时间
-
扩展性考虑:
- 对于特殊键类型的Map,可以借鉴StringKeyMapSerializer的实现思路
- 考虑实现自定义的Map子类来获得更好的序列化性能
总结
Fury框架在Map序列化方面提供了灵活的扩展机制,但需要开发者理解其内部工作机制才能正确使用。通过本文介绍的最佳实践,开发者可以避免常见的陷阱,同时获得更好的性能表现。随着社区的持续优化,Fury正在成为一个更加成熟和高效的选择。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328