Apache Fury Java 序列化中 Map 序列化的性能优化实践
Apache Fury 是一个高性能的跨语言序列化框架,在 Java 语言实现中,Map 的序列化是一个常见但容易出错的场景。本文将深入分析一个典型的 Map 序列化性能问题及其解决方案。
问题背景
在使用 Apache Fury 进行 Java 对象序列化时,开发者遇到了两个主要问题:
- 初始化性能问题:创建 Fury 实例耗时过长,从 1673ms 到 3432ms 不等
- Map 序列化异常:当尝试重用 MapSerializer 实例时出现 IndexOutOfBoundsException
问题分析
初始化性能瓶颈
通过性能分析发现,初始化耗时主要来自 SLF4J 日志系统的加载。即使在禁用日志的情况下,ShimDispatcher 中仍然存在日志初始化操作。这表明 Fury 的日志系统实现存在优化空间。
Map 序列化异常原因
当开发者尝试将 MapSerializer 作为实例变量复用时,出现了序列化异常。这是因为 Fury 内部为了处理嵌套 Map 序列化的情况,会在每次序列化后将 KeySerializer 设置为 null。如果直接复用未重置的 MapSerializer 实例,就会导致序列化失败。
解决方案
日志系统优化
对于日志系统的性能问题,Fury 社区已经通过统一使用 Fury 内部的 LoggerFactory 来替代 SLF4J 的直接使用,这显著减少了初始化时间。
Map 序列化的正确用法
要正确复用 MapSerializer 实例,需要遵循以下模式:
public class StorageSerializer extends Serializer<Storage> {
private final MapSerializers.HashMapSerializer mapSerializer;
private final KeySerializer keySerializer;
public StorageSerializer(Fury fury) {
super(fury, Storage.class);
this.mapSerializer = new MapSerializers.HashMapSerializer(fury);
this.keySerializer = new KeySerializer(fury);
}
@Override
public void write(MemoryBuffer buffer, Storage value) {
mapSerializer.setKeySerializer(keySerializer); // 每次必须重置
mapSerializer.write(buffer, value.map());
}
@Override
public Storage read(MemoryBuffer buffer) {
mapSerializer.setKeySerializer(keySerializer); // 每次必须重置
HashMap<Key, String> map = mapSerializer.read(buffer);
return new Storage(map);
}
}
关键点在于每次序列化/反序列化前都必须显式设置 KeySerializer,这是因为 Fury 内部会在序列化完成后自动清除 KeySerializer 引用以避免嵌套序列化问题。
性能优化建议
- 预注册常用序列化器:对于频繁使用的类型,提前注册可以避免运行时查找开销
- 复用 Fury 实例:避免重复创建 Fury 实例,尽可能复用
- 谨慎使用自定义序列化器:评估是否真的需要自定义序列化器,有时使用 Fury 的默认行为可能更高效
总结
Apache Fury 提供了强大的序列化能力,但在使用时需要注意其内部机制。特别是在处理 Map 序列化时,理解其 KeySerializer 的管理方式至关重要。通过本文介绍的最佳实践,开发者可以避免常见的性能陷阱和序列化错误,充分发挥 Fury 的高性能特性。
随着 Fury 的持续发展,社区正在不断优化其性能表现,包括日志系统的改进和序列化流程的优化,未来版本有望提供更出色的性能表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C074
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00