首页
/ Apache Fury Java 序列化中 Map 序列化的性能优化实践

Apache Fury Java 序列化中 Map 序列化的性能优化实践

2025-06-25 11:35:07作者:蔡怀权

Apache Fury 是一个高性能的跨语言序列化框架,在 Java 语言实现中,Map 的序列化是一个常见但容易出错的场景。本文将深入分析一个典型的 Map 序列化性能问题及其解决方案。

问题背景

在使用 Apache Fury 进行 Java 对象序列化时,开发者遇到了两个主要问题:

  1. 初始化性能问题:创建 Fury 实例耗时过长,从 1673ms 到 3432ms 不等
  2. Map 序列化异常:当尝试重用 MapSerializer 实例时出现 IndexOutOfBoundsException

问题分析

初始化性能瓶颈

通过性能分析发现,初始化耗时主要来自 SLF4J 日志系统的加载。即使在禁用日志的情况下,ShimDispatcher 中仍然存在日志初始化操作。这表明 Fury 的日志系统实现存在优化空间。

Map 序列化异常原因

当开发者尝试将 MapSerializer 作为实例变量复用时,出现了序列化异常。这是因为 Fury 内部为了处理嵌套 Map 序列化的情况,会在每次序列化后将 KeySerializer 设置为 null。如果直接复用未重置的 MapSerializer 实例,就会导致序列化失败。

解决方案

日志系统优化

对于日志系统的性能问题,Fury 社区已经通过统一使用 Fury 内部的 LoggerFactory 来替代 SLF4J 的直接使用,这显著减少了初始化时间。

Map 序列化的正确用法

要正确复用 MapSerializer 实例,需要遵循以下模式:

public class StorageSerializer extends Serializer<Storage> {
    private final MapSerializers.HashMapSerializer mapSerializer;
    private final KeySerializer keySerializer;

    public StorageSerializer(Fury fury) {
        super(fury, Storage.class);
        this.mapSerializer = new MapSerializers.HashMapSerializer(fury);
        this.keySerializer = new KeySerializer(fury);
    }

    @Override
    public void write(MemoryBuffer buffer, Storage value) {
        mapSerializer.setKeySerializer(keySerializer); // 每次必须重置
        mapSerializer.write(buffer, value.map());
    }

    @Override
    public Storage read(MemoryBuffer buffer) {
        mapSerializer.setKeySerializer(keySerializer); // 每次必须重置
        HashMap<Key, String> map = mapSerializer.read(buffer);
        return new Storage(map);
    }
}

关键点在于每次序列化/反序列化前都必须显式设置 KeySerializer,这是因为 Fury 内部会在序列化完成后自动清除 KeySerializer 引用以避免嵌套序列化问题。

性能优化建议

  1. 预注册常用序列化器:对于频繁使用的类型,提前注册可以避免运行时查找开销
  2. 复用 Fury 实例:避免重复创建 Fury 实例,尽可能复用
  3. 谨慎使用自定义序列化器:评估是否真的需要自定义序列化器,有时使用 Fury 的默认行为可能更高效

总结

Apache Fury 提供了强大的序列化能力,但在使用时需要注意其内部机制。特别是在处理 Map 序列化时,理解其 KeySerializer 的管理方式至关重要。通过本文介绍的最佳实践,开发者可以避免常见的性能陷阱和序列化错误,充分发挥 Fury 的高性能特性。

随着 Fury 的持续发展,社区正在不断优化其性能表现,包括日志系统的改进和序列化流程的优化,未来版本有望提供更出色的性能表现。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8