Apache Fury Java 序列化框架中的 Map 序列化性能优化
2025-06-25 18:25:17作者:盛欣凯Ernestine
Apache Fury 是一个高性能的 Java 序列化框架,但在某些场景下可能会遇到性能问题。本文将深入分析一个典型的 Map 序列化性能问题及其解决方案。
问题现象
在使用 Apache Fury 序列化包含 HashMap 的自定义对象时,开发者遇到了两个主要问题:
- 序列化/反序列化过程中需要频繁创建 MapSerializer 实例,导致性能下降
- Fury 框架初始化时间过长(从 1673ms 到 3432ms)
问题分析
Map 序列化性能问题
原始实现中,每次序列化和反序列化操作都会创建新的 HashMapSerializer 实例:
@Override
public void write(MemoryBuffer buffer, Storage value) {
MapSerializers.HashMapSerializer mapSerializer = new MapSerializers.HashMapSerializer(fury);
mapSerializer.setKeySerializer(new KeySerializer(fury));
mapSerializer.write(buffer, value.map());
}
这种实现方式会导致:
- 频繁的对象创建和垃圾回收
- 重复的初始化操作
- 无法利用序列化器的缓存机制
框架初始化性能问题
通过性能分析发现,框架初始化时间过长主要源于 SLF4J 日志系统的初始化过程。虽然 Fury 有自己的 LoggerFactory,但部分代码仍直接使用 SLF4J,导致了不必要的性能开销。
优化方案
Map 序列化优化
正确的做法是将序列化器作为类成员变量,只需初始化一次:
public static class StorageSerializer extends Serializer<Storage> {
private final MapSerializers.HashMapSerializer mapSerializer;
private final KeySerializer keySerializer;
public StorageSerializer(Fury fury) {
super(fury, Storage.class);
this.mapSerializer = new MapSerializers.HashMapSerializer(fury);
this.keySerializer = new KeySerializer(fury);
}
@Override
public void write(MemoryBuffer buffer, Storage value) {
mapSerializer.setKeySerializer(keySerializer);
mapSerializer.write(buffer, value.map());
}
}
关键点:
- 将序列化器实例作为成员变量
- 在 write/read 方法中设置 keySerializer
- 避免每次操作都创建新实例
框架初始化优化
对于框架初始化性能问题,解决方案包括:
- 统一使用 Fury 的 LoggerFactory 替代直接 SLF4J 调用
- 优化日志系统的初始化流程
- 减少不必要的类加载和初始化
技术原理
Apache Fury 的序列化机制采用了一种防止循环引用的设计。在序列化过程中,序列化器的 keySerializer 会被临时置空,以避免嵌套序列化时的无限递归问题。这就是为什么需要在每次 write/read 操作中重新设置 keySerializer。
最佳实践
基于此案例,可以总结出以下使用 Fury 的最佳实践:
- 序列化器重用:尽可能重用序列化器实例,避免频繁创建
- 成员变量管理:将可重用的组件作为序列化器的成员变量
- 日志系统:遵循框架的日志规范,使用 Fury 提供的 LoggerFactory
- 性能监控:对于性能敏感的应用,建议进行性能剖析以发现潜在瓶颈
总结
Apache Fury 作为高性能序列化框架,在正确使用时能够提供优异的性能表现。通过理解其内部机制并遵循最佳实践,开发者可以充分发挥其潜力,避免常见的性能陷阱。本案例展示的 Map 序列化优化不仅解决了具体问题,也为理解 Fury 的设计哲学提供了有价值的参考。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322