探索随机森林的深度:forestjs
2024-05-22 20:22:58作者:钟日瑜
项目介绍
forestjs 是一个专为JavaScript设计的随机森林算法实现库。由 Andrej Karpathy 创建于2012年,它提供了二元分类功能,并允许您自定义弱学习器来构建决策树。该项目还附带了一个在线GUI演示,让您可以在浏览器中直观地体验随机森林的魅力。
在线交互式演示
您可以访问 http://cs.stanford.edu/~karpathy/svmjs/demo/demoforest.html 进行在线交互式操作,亲身体验随机森林的工作流程。相关的代码存储在 /demo 目录下,方便您的研究和学习。
使用方法
forestjs 的使用非常简洁,只需要以下几步:
<script src="./svmjs/lib/randomforest.js"></script>
<script>
forest = new forestjs.RandomForest();
// data 是一个 NxD 的二维数组,labels 是长度为 D 的一维数组
forest.train(data, labels);
// testInstance 是一个长度为 D 的一维数组,返回概率
labelProbability = forest.predictOne(testInstance);
// testData 是一个 MxD 的二维数组,返回长度为 M 的概率数组
labelProbabilities = forest.predict(testData);
</script>
除此之外,forestjs 支持定制化弱学习器,如决策桩(1D 决策)和 2D 决策桩。
参数与选项
训练时可以设置一些主要参数:
options = {};
options.numTrees = 100; // 默认值
options.maxDepth = 4;
options.numTries = 10;
forest.train(data, labels, options);
numTrees: 建议尽可能设置得高,性能会随其线性增长。maxDepth: 每棵树的最大深度,影响决策树复杂度和空间复杂度。numTries: 决策桩学习者在训练时生成的随机假设数量。如果太高可能会导致过拟合。
优点与缺点
随机森林算法有其独特的优点:
- 快速训练: 训练速度极快,测试速度更胜一筹。
- 高度灵活: 可用于多种场景,是数据挖掘竞赛的标准基准之一。
但同时也存在潜在的问题:
- 高维度问题: 当特征维度超过20时,效果可能受到影响,但可以通过选择合适的弱学习器节点来改善。
许可证
forestjs 遵循 MIT 开源许可证,允许自由使用和修改。
通过 forestjs,您可以轻松地将强大的随机森林模型集成到您的 JavaScript 应用程序中,无论是数据分析还是实时预测,都能发挥出高效且准确的效果。无论您是数据科学家,机器学习爱好者,或是Web开发者,这个项目都值得您尝试和探索。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143