推荐开源项目:Scikit-Garden - 高效的决策树与森林算法库
2024-05-23 11:39:39作者:韦蓉瑛
项目介绍
在机器学习领域,Scikit-Learn是一个广泛使用的工具包,但有时我们可能需要更专业的决策树和随机森林模型。这就引出了Scikit-Garden(skgarden),一个专门为Scikit-Learn打造的扩展库,提供了一系列兼容的决策树和森林算法。这个项目的目标是为研究者和开发者提供一种能够探索和应用不同决策树模型的方式,包括一些独特的特性,如Mondrian Trees和Quantile Forests。
项目技术分析
Scikit-Garden提供了多种回归器和分类器,其中包括:
-
回归器:
- MondrianForestRegressor:基于Mondrian分割的随机森林回归。
- ExtraTreesRegressor:增强版的随机森林回归,支持返回标准差信息。
- ExtraTreesQuantileRegressor:用于预测区间估计的额外随机森林回归。
- RandomForestRegressor:基础随机森林回归,同样支持返回标准差信息。
- RandomForestQuantileRegressor:随机森林的分位数回归。
-
分类器:
- MondrianForestClassifier:Mondrian决策树组成的随机森林分类器。
这些模型的设计考虑了高效性和可扩展性,并且都遵循Scikit-Learn的API设计原则,可以无缝替换现有的Scikit-Learn模型。
项目及技术应用场景
Scikit-Garden适用于各种场景,尤其是那些需要对数据进行复杂非线性建模的问题。例如:
- 在回归问题中,可以利用MondrianForests进行变异估计,或者使用QuantileForests来确定预测值的置信区间。
- 分类问题上,MondrianForestClassifier可以处理多类别问题,且对于不平衡的数据集表现良好。
项目特点
Scikit-Garden的主要亮点在于:
- 兼容性:所有模型都是Scikit-Learn兼容的,可以直接替代原有模型,无需改变代码结构。
- 创新性:引入了Mondrian Trees和Quantile Forests等新颖算法,为数据分析带来新的解决方案。
- 易用性:提供了详细的文档和示例,方便开发者快速上手。
- 高性能:优化的实现使得模型训练和预测速度更快。
要安装Scikit-Garden,只需一行命令:
pip install scikit-garden
通过以上介绍,我们看到了Scikit-Garden如何为机器学习实践者带来更多的灵活性和选择。无论你是数据科学家、研究人员还是工程师,这个项目都值得你添加到你的工具箱中去探索更多可能。更多详细信息和示例,欢迎访问其API参考文档和示例页面。
现在,不妨立即尝试一下Scikit-Garden,看看它能为你带来哪些惊喜吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.68 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143