HumanML3D 项目使用教程
1. 项目目录结构及介绍
HumanML3D 项目的目录结构如下:
HumanML3D/
├── common/
│ ├── human_body_prior/
│ └── pose_data/
├── animation.ipynb
├── cal_mean_variance.ipynb
├── dataset_showcase.png
├── environment.yaml
├── index.csv
├── motion_representation.ipynb
├── paramUtil.py
├── raw_pose_processing.ipynb
├── text_process.py
├── LICENSE
└── README.md
目录结构介绍
-
common/: 包含项目中常用的工具和数据处理模块。
- human_body_prior/: 人体姿态先验数据处理模块。
- pose_data/: 姿态数据处理模块。
-
animation.ipynb: Jupyter Notebook 文件,用于动画生成和展示。
-
cal_mean_variance.ipynb: Jupyter Notebook 文件,用于计算数据的均值和方差。
-
dataset_showcase.png: 数据集展示图片。
-
environment.yaml: 项目依赖的环境配置文件。
-
index.csv: 数据索引文件。
-
motion_representation.ipynb: Jupyter Notebook 文件,用于运动表示的处理。
-
paramUtil.py: 参数处理工具模块。
-
raw_pose_processing.ipynb: Jupyter Notebook 文件,用于原始姿态数据的处理。
-
text_process.py: 文本处理模块。
-
LICENSE: 项目许可证文件。
-
README.md: 项目说明文档。
2. 项目启动文件介绍
animation.ipynb
animation.ipynb 是一个 Jupyter Notebook 文件,主要用于生成和展示 3D 人体运动的动画。该文件包含了动画生成的代码示例和可视化展示。
cal_mean_variance.ipynb
cal_mean_variance.ipynb 是一个 Jupyter Notebook 文件,用于计算数据集的均值和方差。这些统计数据在数据预处理和模型训练中非常重要。
motion_representation.ipynb
motion_representation.ipynb 是一个 Jupyter Notebook 文件,用于处理和表示 3D 人体运动数据。该文件包含了运动数据的预处理和表示方法。
raw_pose_processing.ipynb
raw_pose_processing.ipynb 是一个 Jupyter Notebook 文件,用于处理原始的姿态数据。该文件包含了数据清洗、格式转换等操作。
3. 项目的配置文件介绍
environment.yaml
environment.yaml 是项目的依赖环境配置文件。通过该文件,可以快速创建项目的运行环境。使用以下命令可以创建并激活环境:
conda env create -f environment.yaml
conda activate torch_render
index.csv
index.csv 是数据索引文件,包含了数据集的索引信息。该文件用于快速定位和加载数据。
LICENSE
LICENSE 文件包含了项目的许可证信息,说明项目的使用条款和条件。
README.md
README.md 是项目的说明文档,包含了项目的概述、安装步骤、使用方法等信息。建议在开始使用项目前仔细阅读该文件。
通过以上介绍,您应该对 HumanML3D 项目的目录结构、启动文件和配置文件有了基本的了解。希望这份教程能帮助您更好地使用该项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00