HumanML3D 项目使用教程
1. 项目目录结构及介绍
HumanML3D 项目的目录结构如下:
HumanML3D/
├── common/
│   ├── human_body_prior/
│   └── pose_data/
├── animation.ipynb
├── cal_mean_variance.ipynb
├── dataset_showcase.png
├── environment.yaml
├── index.csv
├── motion_representation.ipynb
├── paramUtil.py
├── raw_pose_processing.ipynb
├── text_process.py
├── LICENSE
└── README.md
目录结构介绍
- 
common/: 包含项目中常用的工具和数据处理模块。
- human_body_prior/: 人体姿态先验数据处理模块。
 - pose_data/: 姿态数据处理模块。
 
 - 
animation.ipynb: Jupyter Notebook 文件,用于动画生成和展示。
 - 
cal_mean_variance.ipynb: Jupyter Notebook 文件,用于计算数据的均值和方差。
 - 
dataset_showcase.png: 数据集展示图片。
 - 
environment.yaml: 项目依赖的环境配置文件。
 - 
index.csv: 数据索引文件。
 - 
motion_representation.ipynb: Jupyter Notebook 文件,用于运动表示的处理。
 - 
paramUtil.py: 参数处理工具模块。
 - 
raw_pose_processing.ipynb: Jupyter Notebook 文件,用于原始姿态数据的处理。
 - 
text_process.py: 文本处理模块。
 - 
LICENSE: 项目许可证文件。
 - 
README.md: 项目说明文档。
 
2. 项目启动文件介绍
animation.ipynb
animation.ipynb 是一个 Jupyter Notebook 文件,主要用于生成和展示 3D 人体运动的动画。该文件包含了动画生成的代码示例和可视化展示。
cal_mean_variance.ipynb
cal_mean_variance.ipynb 是一个 Jupyter Notebook 文件,用于计算数据集的均值和方差。这些统计数据在数据预处理和模型训练中非常重要。
motion_representation.ipynb
motion_representation.ipynb 是一个 Jupyter Notebook 文件,用于处理和表示 3D 人体运动数据。该文件包含了运动数据的预处理和表示方法。
raw_pose_processing.ipynb
raw_pose_processing.ipynb 是一个 Jupyter Notebook 文件,用于处理原始的姿态数据。该文件包含了数据清洗、格式转换等操作。
3. 项目的配置文件介绍
environment.yaml
environment.yaml 是项目的依赖环境配置文件。通过该文件,可以快速创建项目的运行环境。使用以下命令可以创建并激活环境:
conda env create -f environment.yaml
conda activate torch_render
index.csv
index.csv 是数据索引文件,包含了数据集的索引信息。该文件用于快速定位和加载数据。
LICENSE
LICENSE 文件包含了项目的许可证信息,说明项目的使用条款和条件。
README.md
README.md 是项目的说明文档,包含了项目的概述、安装步骤、使用方法等信息。建议在开始使用项目前仔细阅读该文件。
通过以上介绍,您应该对 HumanML3D 项目的目录结构、启动文件和配置文件有了基本的了解。希望这份教程能帮助您更好地使用该项目。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00