T2M-GPT 开源项目使用教程
2024-09-14 18:36:48作者:龚格成
1. 项目介绍
T2M-GPT 是一个基于 PyTorch 的开源项目,旨在通过文本描述生成人类动作。该项目结合了 Vector Quantised-Variational AutoEncoder (VQ-VAE) 和 Generative Pre-trained Transformer (GPT) 技术,能够在给定文本描述的情况下生成高质量的人类动作序列。T2M-GPT 在 CVPR 2023 上被提出,并且在 HumanML3D 数据集上展示了优于其他竞争方法的性能。
主要特点
- 高质量的动作生成:通过 VQ-VAE 和 GPT 的结合,生成与文本描述高度一致的动作序列。
- 简单易用的框架:项目提供了详细的安装和使用指南,方便开发者快速上手。
- 支持多种数据集:支持 HumanML3D 和 KIT-ML 数据集,适用于不同的应用场景。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.8 和 PyTorch 1.8.1。然后,使用以下命令创建并激活虚拟环境:
conda env create -f environment.yml
conda activate T2M-GPT
2.2 下载数据集和预训练模型
下载所需的 3D 人类动作-语言数据集(如 HumanML3D 和 KIT-ML),并准备好数据集目录结构。然后,下载预训练模型:
bash dataset/prepare/download_model.sh
2.3 快速启动示例
以下是一个快速启动示例,展示如何使用 T2M-GPT 生成动作序列:
import torch
from models.t2m_gpt import T2M_GPT
# 加载预训练模型
model = T2M_GPT.load_from_checkpoint('pretrained/net_best_fid.pth')
model.eval()
# 输入文本描述
text_description = "a man steps forward and does a handstand"
# 生成动作序列
with torch.no_grad():
generated_motion = model.generate(text_description)
print(generated_motion)
3. 应用案例和最佳实践
3.1 应用案例
T2M-GPT 可以广泛应用于以下领域:
- 虚拟现实:生成与用户输入文本描述相匹配的虚拟人物动作。
- 动画制作:辅助动画师快速生成符合文本描述的角色动作。
- 人机交互:通过文本指令控制虚拟角色或机器人执行特定动作。
3.2 最佳实践
- 数据集选择:根据应用场景选择合适的数据集(如 HumanML3D 或 KIT-ML)。
- 模型微调:根据具体需求对预训练模型进行微调,以提高生成动作的质量。
- 多模态生成:结合其他模态(如图像或语音)生成更加丰富的动作序列。
4. 典型生态项目
T2M-GPT 作为一个开源项目,可以与其他相关项目结合使用,形成更强大的生态系统:
- OpenPose:用于从图像或视频中提取人体关键点,结合 T2M-GPT 生成动作序列。
- Unity ML-Agents:用于在 Unity 环境中训练和部署智能体,结合 T2M-GPT 生成智能体动作。
- Hugging Face Transformers:用于处理和生成文本数据,结合 T2M-GPT 生成文本描述的动作序列。
通过这些生态项目的结合,可以进一步扩展 T2M-GPT 的应用场景和功能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
218
88
暂无简介
Dart
720
174
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
334
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
435
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19