T2M-GPT 开源项目使用教程
2024-09-14 20:50:13作者:龚格成
1. 项目介绍
T2M-GPT 是一个基于 PyTorch 的开源项目,旨在通过文本描述生成人类动作。该项目结合了 Vector Quantised-Variational AutoEncoder (VQ-VAE) 和 Generative Pre-trained Transformer (GPT) 技术,能够在给定文本描述的情况下生成高质量的人类动作序列。T2M-GPT 在 CVPR 2023 上被提出,并且在 HumanML3D 数据集上展示了优于其他竞争方法的性能。
主要特点
- 高质量的动作生成:通过 VQ-VAE 和 GPT 的结合,生成与文本描述高度一致的动作序列。
- 简单易用的框架:项目提供了详细的安装和使用指南,方便开发者快速上手。
- 支持多种数据集:支持 HumanML3D 和 KIT-ML 数据集,适用于不同的应用场景。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.8 和 PyTorch 1.8.1。然后,使用以下命令创建并激活虚拟环境:
conda env create -f environment.yml
conda activate T2M-GPT
2.2 下载数据集和预训练模型
下载所需的 3D 人类动作-语言数据集(如 HumanML3D 和 KIT-ML),并准备好数据集目录结构。然后,下载预训练模型:
bash dataset/prepare/download_model.sh
2.3 快速启动示例
以下是一个快速启动示例,展示如何使用 T2M-GPT 生成动作序列:
import torch
from models.t2m_gpt import T2M_GPT
# 加载预训练模型
model = T2M_GPT.load_from_checkpoint('pretrained/net_best_fid.pth')
model.eval()
# 输入文本描述
text_description = "a man steps forward and does a handstand"
# 生成动作序列
with torch.no_grad():
generated_motion = model.generate(text_description)
print(generated_motion)
3. 应用案例和最佳实践
3.1 应用案例
T2M-GPT 可以广泛应用于以下领域:
- 虚拟现实:生成与用户输入文本描述相匹配的虚拟人物动作。
- 动画制作:辅助动画师快速生成符合文本描述的角色动作。
- 人机交互:通过文本指令控制虚拟角色或机器人执行特定动作。
3.2 最佳实践
- 数据集选择:根据应用场景选择合适的数据集(如 HumanML3D 或 KIT-ML)。
- 模型微调:根据具体需求对预训练模型进行微调,以提高生成动作的质量。
- 多模态生成:结合其他模态(如图像或语音)生成更加丰富的动作序列。
4. 典型生态项目
T2M-GPT 作为一个开源项目,可以与其他相关项目结合使用,形成更强大的生态系统:
- OpenPose:用于从图像或视频中提取人体关键点,结合 T2M-GPT 生成动作序列。
- Unity ML-Agents:用于在 Unity 环境中训练和部署智能体,结合 T2M-GPT 生成智能体动作。
- Hugging Face Transformers:用于处理和生成文本数据,结合 T2M-GPT 生成文本描述的动作序列。
通过这些生态项目的结合,可以进一步扩展 T2M-GPT 的应用场景和功能。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
866
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3