T2M-GPT 项目使用教程
2024-09-18 23:23:24作者:秋泉律Samson
1. 项目目录结构及介绍
T2M-GPT/
├── dataset/
│ ├── HumanML3D/
│ ├── KIT-ML/
│ ├── prepare/
│ └── ...
├── img/
├── models/
├── options/
├── utils/
├── visualization/
├── visualize/
├── .gitignore
├── GPT_eval_multi.py
├── LICENSE
├── README.md
├── VQ_eval.py
├── environment.yml
├── render_final.py
├── train_t2m_trans.py
└── train_vq.py
目录结构介绍
- dataset/: 包含数据集的目录,如 HumanML3D 和 KIT-ML。
- img/: 存放项目相关的图片文件。
- models/: 存放模型的定义和实现代码。
- options/: 存放配置选项的定义文件。
- utils/: 存放各种工具函数和辅助代码。
- visualization/: 存放可视化相关的代码。
- visualize/: 存放可视化相关的代码。
- .gitignore: Git 忽略文件配置。
- GPT_eval_multi.py: GPT 模型评估脚本。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- VQ_eval.py: VQ-VAE 模型评估脚本。
- environment.yml: 项目依赖环境配置文件。
- render_final.py: 最终渲染脚本。
- train_t2m_trans.py: GPT 模型训练脚本。
- train_vq.py: VQ-VAE 模型训练脚本。
2. 项目启动文件介绍
train_vq.py
该文件用于训练 VQ-VAE 模型。通过运行该脚本,可以启动 VQ-VAE 模型的训练过程。
python3 train_vq.py \
--batch-size 256 \
--lr 2e-4 \
--total-iter 300000 \
--lr-scheduler 200000 \
--nb-code 512 \
--down-t 2 \
--depth 3 \
--dilation-growth-rate 3 \
--out-dir output \
--dataname t2m \
--vq-act relu \
--quantizer ema_reset \
--loss-vel 0.5 \
--recons-loss l1_smooth \
--exp-name VQVAE
train_t2m_trans.py
该文件用于训练 GPT 模型。通过运行该脚本,可以启动 GPT 模型的训练过程。
python3 train_t2m_trans.py \
--exp-name GPT \
--batch-size 128 \
--num-layers 9 \
--embed-dim-gpt 1024 \
--nb-code 512 \
--n-head-gpt 16 \
--block-size 51 \
--ff-rate 4 \
--drop-out-rate 0.1 \
--resume-pth output/VQVAE/net_last.pth \
--vq-name VQVAE \
--out-dir output \
--total-iter 300000 \
--lr-scheduler 150000 \
--lr 0.0001 \
--dataname t2m \
--down-t 2 \
--depth 3 \
--quantizer ema_reset \
--eval-iter 10000 \
--pkeep 0.5 \
--dilation-growth-rate 3 \
--vq-act relu
3. 项目的配置文件介绍
environment.yml
该文件定义了项目的依赖环境。通过运行以下命令可以创建项目的虚拟环境:
conda env create -f environment.yml
conda activate T2M-GPT
options/
目录
该目录下存放了项目的配置选项文件,定义了训练和评估过程中使用的各种参数。
dataset/prepare/
目录
该目录下存放了数据集的准备脚本,如下载数据集、预处理数据等。
bash dataset/prepare/download_glove.sh
bash dataset/prepare/download_extractor.sh
bash dataset/prepare/download_model.sh
通过这些脚本,可以下载和准备项目所需的数据集和预训练模型。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区016
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
263
53
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
64
16
open-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
85
63
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
195
45
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
xxl-job
XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。
Java
9
0
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
171
41
RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
38
24
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
332
27