RegNet-Search-PyTorch 使用教程
1. 项目介绍
RegNet-Search-PyTorch 是一个使用 PyTorch 和 AutoTorch 实现的 RegNet 神经架构搜索的开源项目。该项目基于 "Designing Network Design Spaces" 论文中的 RegNet 模型,通过自动化搜索找到最优的网络架构。此项目可用于研究如何将超参数优化(HPO)应用到神经架构搜索(NAS)中,特别是在 CVPR 2020 的教程 "From HPO to NAS: Automated Deep Learning" 中有所应用。
2. 项目快速启动
在开始之前,请确保已安装以下依赖项:
- PyTorch
- AutoTorch
- THOP (THroughputOptimizer)
- torch-encoding
- Apex (可选,用于混合精度训练)
以下命令将安装上述所需的基本依赖项:
pip install autotorch thop torch-encoding
若要安装 Apex,可以使用以下命令:
git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
克隆项目
将项目克隆到本地:
git clone https://github.com/zhanghang1989/RegNet-Search-PyTorch.git
cd RegNet-Search-PyTorch
生成配置文件
以下命令将生成具有预期 GFLOPs 的配置文件:
python generate_configs.py --gflops 4 --num-configs 32 --config-file configs/RegNetX-4.0GF
生成的配置文件将保存在 configs/
目录下。
3. 应用案例和最佳实践
以下是一个应用案例,展示了如何从一个配置文件训练一个模型:
训练模型
准备 ImageNet 数据集,并使用以下命令训练一个模型:
cd scripts/
python prepare_imagenet.py --download-dir /path/to/your/dataset/
python train.py --dataset imagenet --config-file configs/RegNetX-4.0GF.ini --lr-scheduler cos --epochs 120 --checkname default --lr 0.025 --batch-size 64 --amp
这里,--config-file
指定了模型的配置文件,--lr-scheduler
设置了学习率调度器,--epochs
为训练的总轮数,--checkname
是保存模型的名称,--lr
是初始学习率,--batch-size
是批量大小,--amp
表示启用自动混合精度。
搜索最佳模型
若要在一个文件夹中搜索最佳模型配置,可以使用以下命令:
python search.py --config-file-folder gen_configs/RegNet-0.4GF/ --output-folder out_configs/ --epochs 25
此命令将训练每个配置文件对应的模型,并在训练后将准确率写入输出配置文件。
4. 典型生态项目
RegNet-Search-PyTorch 是 PyTorch 生态系统中的一个项目,它依赖于 PyTorch 的深度学习框架,以及 AutoTorch 等其他开源项目。在 PyTorch 生态系统中,还有许多其他相关的项目,例如:
- PyTorch官方模型库(Torchvision)
- 用于图像处理的 OpenCV
- 用于自然语言处理的 Transformers
这些项目共同构成了一个强大的深度学习生态系统,为研究人员和开发者提供了丰富的工具和资源。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









