RegNet-Search-PyTorch 使用教程
1. 项目介绍
RegNet-Search-PyTorch 是一个使用 PyTorch 和 AutoTorch 实现的 RegNet 神经架构搜索的开源项目。该项目基于 "Designing Network Design Spaces" 论文中的 RegNet 模型,通过自动化搜索找到最优的网络架构。此项目可用于研究如何将超参数优化(HPO)应用到神经架构搜索(NAS)中,特别是在 CVPR 2020 的教程 "From HPO to NAS: Automated Deep Learning" 中有所应用。
2. 项目快速启动
在开始之前,请确保已安装以下依赖项:
- PyTorch
- AutoTorch
- THOP (THroughputOptimizer)
- torch-encoding
- Apex (可选,用于混合精度训练)
以下命令将安装上述所需的基本依赖项:
pip install autotorch thop torch-encoding
若要安装 Apex,可以使用以下命令:
git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"
克隆项目
将项目克隆到本地:
git clone https://github.com/zhanghang1989/RegNet-Search-PyTorch.git
cd RegNet-Search-PyTorch
生成配置文件
以下命令将生成具有预期 GFLOPs 的配置文件:
python generate_configs.py --gflops 4 --num-configs 32 --config-file configs/RegNetX-4.0GF
生成的配置文件将保存在 configs/ 目录下。
3. 应用案例和最佳实践
以下是一个应用案例,展示了如何从一个配置文件训练一个模型:
训练模型
准备 ImageNet 数据集,并使用以下命令训练一个模型:
cd scripts/
python prepare_imagenet.py --download-dir /path/to/your/dataset/
python train.py --dataset imagenet --config-file configs/RegNetX-4.0GF.ini --lr-scheduler cos --epochs 120 --checkname default --lr 0.025 --batch-size 64 --amp
这里,--config-file 指定了模型的配置文件,--lr-scheduler 设置了学习率调度器,--epochs 为训练的总轮数,--checkname 是保存模型的名称,--lr 是初始学习率,--batch-size 是批量大小,--amp 表示启用自动混合精度。
搜索最佳模型
若要在一个文件夹中搜索最佳模型配置,可以使用以下命令:
python search.py --config-file-folder gen_configs/RegNet-0.4GF/ --output-folder out_configs/ --epochs 25
此命令将训练每个配置文件对应的模型,并在训练后将准确率写入输出配置文件。
4. 典型生态项目
RegNet-Search-PyTorch 是 PyTorch 生态系统中的一个项目,它依赖于 PyTorch 的深度学习框架,以及 AutoTorch 等其他开源项目。在 PyTorch 生态系统中,还有许多其他相关的项目,例如:
- PyTorch官方模型库(Torchvision)
- 用于图像处理的 OpenCV
- 用于自然语言处理的 Transformers
这些项目共同构成了一个强大的深度学习生态系统,为研究人员和开发者提供了丰富的工具和资源。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00