RegNet搜索实现指南:PyTorch版
2024-09-27 21:33:53作者:尤辰城Agatha
本指南将引导您深入了解如何使用zhanghang1989/RegNet-Search-PyTorch项目进行神经架构搜索(NAS)以构建RegNet模型。本项目基于PyTorch框架,并利用AutoTorch工具,适用于那些希望自定义和优化其计算机视觉任务中使用的RegNet变体的研究人员和开发者。
1. 目录结构及介绍
项目遵循清晰的组织结构,便于开发者快速定位关键组件:
RegNet-Search-PyTorch/
│
├── arch # 模型架构相关代码或定义
├── configs # 配置文件夹,存放各种预设和搜索得到的配置
│ ├── RegNetX-0.4GF.ini # 示例配置文件,用于指定RegNet模型的参数
│ └── ... # 更多配置文件
├── gen_configs # 自动生成的配置文件存储位置
├── out_configs # 训练后的最优配置保存位置
├── scripts # 工具脚本,如数据准备和训练脚本
│ ├── prepare_imagenet.py # 准备ImageNet数据集的脚本
│ └── train.py # 主训练脚本
├── requirements.txt # 项目依赖列表
├── search.py # 进行模型架构搜索的主要脚本
├── test_flops.py # 测试模型参数量和FLOPs的脚本
├── train.py # 训练单个模型的脚本
├── verify.py # 校验模型配置的脚本
└── ...
2. 启动文件介绍
训练单个模型 (train.py)
- 功能:从配置文件加载模型,训练并评估它。通过提供不同的配置文件,可以训练出不同规格的RegNet模型。
- 使用示例:
python train.py --dataset imagenet --config-file configs/RegNetX-4.0GF.ini --lr-scheduler cos --epochs 120 --checkname default --lr 0.025 --batch-size 64 --amp
架构搜索 (search.py)
- 功能:根据给定的GFLOPs范围,自动搜索最优的RegNet配置。
- 使用示例:
python search.py --config-file-folder gen_configs/RegNet-0.4GF/ --output-folder out_configs/ --epochs 25
测试模型参数与FLOPs (test_flops.py)
- 功能:计算模型的参数数量和浮点运算次数。
- 使用示例:
python test_flops.py --config-file configs/RegNetX-4.0GF.ini
3. 配置文件介绍
配置文件位于configs目录下,如RegNetX-0.4GF.ini是模型的核心配置,通常包括但不限于:
- 基础网络设定:模型的初始设计参数,如深度、宽度因子等。
- 超参数:学习率、权重衰减、批量大小等。
- 训练细节:可能包括调度器策略、训练轮次等。
每个配置文件都是对特定RegNet变种的详细描述,使得无需手动更改代码即可调整模型结构与训练设置。
在进行实验前,请确保已按需求安装所有依赖项,并且理解每个配置文件中的参数意义,以便有效利用此项目进行定制化的模型开发与研究。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869