ClickHouseDB FDW 使用指南:PostgreSQL与ClickHouse数据集成方案
2025-07-08 00:48:27作者:范靓好Udolf
前言
在现代数据架构中,经常需要将不同数据库系统的数据进行集成和分析。ClickHouseDB FDW(Foreign Data Wrapper)为PostgreSQL用户提供了一个强大的工具,使其能够直接查询ClickHouse数据库中的数据,而无需进行复杂的数据迁移或ETL过程。
安装与基础配置
在开始使用ClickHouseDB FDW之前,需要确保已经完成以下准备工作:
- 安装PostgreSQL数据库(建议使用较新版本)
- 安装ClickHouse数据库
- 安装ClickHouse ODBC驱动
完成基础环境准备后,在PostgreSQL中创建扩展:
CREATE EXTENSION clickhousedb_fdw;
示例数据准备
为了更好地演示功能,我们首先在ClickHouse中创建示例数据库和表结构:
CREATE DATABASE test_database;
USE test_database;
CREATE TABLE tax_bills_nyc (
bbl Int64,
owner_name String,
address String,
tax_class String,
tax_rate String,
emv Float64,
tbea Float64,
bav Float64,
tba String,
property_tax String,
condonumber String,
condo String,
insertion_date DateTime MATERIALIZED now()
) ENGINE = MergeTree PARTITION BY tax_class ORDER BY (owner_name);
然后导入示例数据:
curl -X GET 'http://taxbills.nyc/tax_bills_june15_bbls.csv' | \
clickhouse-client --input_format_allow_errors_num=10 \
--query="INSERT INTO test_database.tax_bills_nyc FORMAT CSV"
PostgreSQL端配置
在PostgreSQL中,我们需要配置外部服务器、用户映射和外部表:
-- 创建外部服务器连接
CREATE SERVER clickhouse_svr
FOREIGN DATA WRAPPER clickhousedb_fdw
OPTIONS(
dbname 'test_database',
driver '/path/to/libclickhouseodbc.so',
host '127.0.0.1'
);
-- 创建用户映射
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr;
-- 创建外部表映射
CREATE FOREIGN TABLE tax_bills_nyc (
bbl int8,
owner_name text,
address text,
tax_class text,
tax_rate text,
emv Float,
tbea Float,
bav Float,
tba text,
property_tax text,
condonumber text,
condo text,
insertion_date Time
) SERVER clickhouse_svr;
基本查询操作
配置完成后,可以像查询普通PostgreSQL表一样查询ClickHouse数据:
SELECT bbl, tbea, bav, insertion_date
FROM tax_bills_nyc
LIMIT 5;
高级功能
聚合下推(Aggregate Pushdown)
ClickHouseDB FDW支持聚合下推功能,可以将聚合操作下推到ClickHouse执行,显著提高性能:
-- 聚合操作在PostgreSQL端执行
EXPLAIN VERBOSE SELECT count(bbl) FROM tax_bills_nyc LIMIT 5;
-- 聚合操作下推到ClickHouse执行
EXPLAIN VERBOSE SELECT count(bbl) FROM tax_bills_nyc;
连接下推(Join Pushdown)
同样支持连接操作的下推,减少数据传输量:
EXPLAIN VERBOSE
SELECT t2.bbl, t2.owner_name, t1.bav
FROM tax_bills_nyc t1
RIGHT OUTER JOIN tax_bills t2 ON (t1.bbl = t2.bbl);
性能优化建议
- 合理设计分区键:在ClickHouse端根据查询模式设计合理的分区策略
- 使用下推功能:尽可能利用聚合下推和连接下推减少数据传输
- 数据类型映射:注意PostgreSQL和ClickHouse之间的数据类型差异
- 网络优化:确保PostgreSQL和ClickHouse服务器之间的网络连接稳定高效
当前限制
- 不支持所有ClickHouse配置参数的映射
- 复杂连接下推的支持有限
- 从ClickHouse分区删除数据的支持不完善
结语
ClickHouseDB FDW为PostgreSQL用户提供了访问ClickHouse数据的便捷通道,特别适合需要在PostgreSQL中分析ClickHouse海量数据的场景。通过合理使用其高级功能,可以构建高效的数据分析管道,充分发挥两种数据库各自的优势。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
414
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
Ascend Extension for PyTorch
Python
228
258
暂无简介
Dart
679
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
325
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492