ClickHouseDB FDW 使用指南:PostgreSQL与ClickHouse数据集成方案
2025-07-08 13:04:36作者:范靓好Udolf
前言
在现代数据架构中,经常需要将不同数据库系统的数据进行集成和分析。ClickHouseDB FDW(Foreign Data Wrapper)为PostgreSQL用户提供了一个强大的工具,使其能够直接查询ClickHouse数据库中的数据,而无需进行复杂的数据迁移或ETL过程。
安装与基础配置
在开始使用ClickHouseDB FDW之前,需要确保已经完成以下准备工作:
- 安装PostgreSQL数据库(建议使用较新版本)
 - 安装ClickHouse数据库
 - 安装ClickHouse ODBC驱动
 
完成基础环境准备后,在PostgreSQL中创建扩展:
CREATE EXTENSION clickhousedb_fdw;
示例数据准备
为了更好地演示功能,我们首先在ClickHouse中创建示例数据库和表结构:
CREATE DATABASE test_database;
USE test_database;
CREATE TABLE tax_bills_nyc (
    bbl Int64,
    owner_name String,
    address String,
    tax_class String,
    tax_rate String,
    emv Float64,
    tbea Float64,
    bav Float64,
    tba String,
    property_tax String,
    condonumber String,
    condo String,
    insertion_date DateTime MATERIALIZED now()
) ENGINE = MergeTree PARTITION BY tax_class ORDER BY (owner_name);
然后导入示例数据:
curl -X GET 'http://taxbills.nyc/tax_bills_june15_bbls.csv' | \
clickhouse-client --input_format_allow_errors_num=10 \
--query="INSERT INTO test_database.tax_bills_nyc FORMAT CSV"
PostgreSQL端配置
在PostgreSQL中,我们需要配置外部服务器、用户映射和外部表:
-- 创建外部服务器连接
CREATE SERVER clickhouse_svr 
FOREIGN DATA WRAPPER clickhousedb_fdw 
OPTIONS(
    dbname 'test_database', 
    driver '/path/to/libclickhouseodbc.so', 
    host '127.0.0.1'
);
-- 创建用户映射
CREATE USER MAPPING FOR CURRENT_USER SERVER clickhouse_svr;
-- 创建外部表映射
CREATE FOREIGN TABLE tax_bills_nyc (
    bbl int8,
    owner_name text,
    address text,
    tax_class text,
    tax_rate text,
    emv Float,
    tbea Float,
    bav Float,
    tba text,
    property_tax text,
    condonumber text,
    condo text,
    insertion_date Time
) SERVER clickhouse_svr;
基本查询操作
配置完成后,可以像查询普通PostgreSQL表一样查询ClickHouse数据:
SELECT bbl, tbea, bav, insertion_date 
FROM tax_bills_nyc 
LIMIT 5;
高级功能
聚合下推(Aggregate Pushdown)
ClickHouseDB FDW支持聚合下推功能,可以将聚合操作下推到ClickHouse执行,显著提高性能:
-- 聚合操作在PostgreSQL端执行
EXPLAIN VERBOSE SELECT count(bbl) FROM tax_bills_nyc LIMIT 5;
-- 聚合操作下推到ClickHouse执行
EXPLAIN VERBOSE SELECT count(bbl) FROM tax_bills_nyc;
连接下推(Join Pushdown)
同样支持连接操作的下推,减少数据传输量:
EXPLAIN VERBOSE 
SELECT t2.bbl, t2.owner_name, t1.bav 
FROM tax_bills_nyc t1 
RIGHT OUTER JOIN tax_bills t2 ON (t1.bbl = t2.bbl);
性能优化建议
- 合理设计分区键:在ClickHouse端根据查询模式设计合理的分区策略
 - 使用下推功能:尽可能利用聚合下推和连接下推减少数据传输
 - 数据类型映射:注意PostgreSQL和ClickHouse之间的数据类型差异
 - 网络优化:确保PostgreSQL和ClickHouse服务器之间的网络连接稳定高效
 
当前限制
- 不支持所有ClickHouse配置参数的映射
 - 复杂连接下推的支持有限
 - 从ClickHouse分区删除数据的支持不完善
 
结语
ClickHouseDB FDW为PostgreSQL用户提供了访问ClickHouse数据的便捷通道,特别适合需要在PostgreSQL中分析ClickHouse海量数据的场景。通过合理使用其高级功能,可以构建高效的数据分析管道,充分发挥两种数据库各自的优势。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446