Fuzzing101 项目教程
项目介绍
Fuzzing101 是一个由 GitHub Security Lab 发起的 fuzzing 教程项目,旨在帮助初学者和有经验的开发者学习如何进行 fuzzing 测试。该项目提供了 10 个真实的 fuzzing 目标和 10 个练习,涵盖了从基础到高级的 fuzzing 技术。通过这些练习,学习者可以掌握如何使用 AFL++ 等工具进行 fuzzing,并学习如何发现和修复软件中的漏洞。
项目快速启动
1. 克隆项目
首先,克隆 Fuzzing101 项目到本地:
git clone https://github.com/antonio-morales/Fuzzing101.git
cd Fuzzing101
2. 安装依赖
确保你的系统上安装了必要的依赖。以下是一些常见的依赖项:
sudo apt-get update
sudo apt-get install build-essential clang llvm python3
3. 编译目标程序
每个练习都有一个对应的目标程序。以第一个练习为例,编译 Xpdf:
cd Exercise1
CC=/afl/afl-clang-lto CXX=/afl/afl-clang-lto++ ./configure --prefix="/home/xpdf/out"
make
make install
4. 运行 Fuzzing
使用 AFL++ 进行 fuzzing:
/afl/afl-fuzz -i inputs/ -o out -s 123 -- /path/to/pdftotext @@ -
应用案例和最佳实践
案例1:Xpdf 漏洞挖掘
在第一个练习中,目标是通过 fuzzing 发现 Xpdf 中的 CVE-2019-13288 漏洞。通过使用 AFL++ 和 GDB,学习者可以逐步掌握如何进行 fuzzing 并分析崩溃。
案例2:GIMP 持久化模式 Fuzzing
在第六个练习中,目标是对 GIMP 进行 fuzzing。通过使用 Persistent Mode,学习者可以提高 fuzzing 的效率,并发现 GIMP 中的 CVE-2016-4994 漏洞。
最佳实践
- 使用 Persistent Mode:在 fuzzing 带有 GUI 的应用程序时,使用 Persistent Mode 可以显著提高 fuzzing 速度。
- 结合 ASan 和 Sanitizers:在编译目标程序时,启用 AddressSanitizer (ASan) 和其它 sanitizers,可以帮助发现内存相关的漏洞。
- 分析 Crash:使用 GDB 或其他调试工具分析 fuzzing 过程中发现的崩溃,定位漏洞并进行修复。
典型生态项目
1. AFL++
AFL++ 是一个基于 AFL 的 fuzzing 工具,提供了更多的功能和优化。Fuzzing101 项目中广泛使用了 AFL++ 进行 fuzzing。
2. QEMU
QEMU 是一个开源的虚拟机和仿真器。在第七个练习中,使用 AFL 的 QEMU 模式对 Adobe Reader 进行 fuzzing,展示了如何对二进制文件进行 fuzzing。
3. GDB
GDB 是一个强大的调试工具,用于分析 fuzzing 过程中发现的崩溃。通过 GDB,可以深入了解程序的执行流程和崩溃原因。
通过 Fuzzing101 项目,学习者可以系统地学习 fuzzing 技术,并应用到实际的软件安全测试中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00