Fuzzing101 项目教程
项目介绍
Fuzzing101 是一个由 GitHub Security Lab 发起的 fuzzing 教程项目,旨在帮助初学者和有经验的开发者学习如何进行 fuzzing 测试。该项目提供了 10 个真实的 fuzzing 目标和 10 个练习,涵盖了从基础到高级的 fuzzing 技术。通过这些练习,学习者可以掌握如何使用 AFL++ 等工具进行 fuzzing,并学习如何发现和修复软件中的漏洞。
项目快速启动
1. 克隆项目
首先,克隆 Fuzzing101 项目到本地:
git clone https://github.com/antonio-morales/Fuzzing101.git
cd Fuzzing101
2. 安装依赖
确保你的系统上安装了必要的依赖。以下是一些常见的依赖项:
sudo apt-get update
sudo apt-get install build-essential clang llvm python3
3. 编译目标程序
每个练习都有一个对应的目标程序。以第一个练习为例,编译 Xpdf:
cd Exercise1
CC=/afl/afl-clang-lto CXX=/afl/afl-clang-lto++ ./configure --prefix="/home/xpdf/out"
make
make install
4. 运行 Fuzzing
使用 AFL++ 进行 fuzzing:
/afl/afl-fuzz -i inputs/ -o out -s 123 -- /path/to/pdftotext @@ -
应用案例和最佳实践
案例1:Xpdf 漏洞挖掘
在第一个练习中,目标是通过 fuzzing 发现 Xpdf 中的 CVE-2019-13288 漏洞。通过使用 AFL++ 和 GDB,学习者可以逐步掌握如何进行 fuzzing 并分析崩溃。
案例2:GIMP 持久化模式 Fuzzing
在第六个练习中,目标是对 GIMP 进行 fuzzing。通过使用 Persistent Mode,学习者可以提高 fuzzing 的效率,并发现 GIMP 中的 CVE-2016-4994 漏洞。
最佳实践
- 使用 Persistent Mode:在 fuzzing 带有 GUI 的应用程序时,使用 Persistent Mode 可以显著提高 fuzzing 速度。
- 结合 ASan 和 Sanitizers:在编译目标程序时,启用 AddressSanitizer (ASan) 和其它 sanitizers,可以帮助发现内存相关的漏洞。
- 分析 Crash:使用 GDB 或其他调试工具分析 fuzzing 过程中发现的崩溃,定位漏洞并进行修复。
典型生态项目
1. AFL++
AFL++ 是一个基于 AFL 的 fuzzing 工具,提供了更多的功能和优化。Fuzzing101 项目中广泛使用了 AFL++ 进行 fuzzing。
2. QEMU
QEMU 是一个开源的虚拟机和仿真器。在第七个练习中,使用 AFL 的 QEMU 模式对 Adobe Reader 进行 fuzzing,展示了如何对二进制文件进行 fuzzing。
3. GDB
GDB 是一个强大的调试工具,用于分析 fuzzing 过程中发现的崩溃。通过 GDB,可以深入了解程序的执行流程和崩溃原因。
通过 Fuzzing101 项目,学习者可以系统地学习 fuzzing 技术,并应用到实际的软件安全测试中。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0258PublicCMS
266万多行代码修改 持续迭代9年 现代化java cms完整开源,轻松支撑千万数据、千万PV;支持静态化,服务器端包含,多级缓存,全文搜索复杂搜索,后台支持手机操作; 目前已经拥有全球0.0005%(w3techs提供的数据)的用户,语言支持中、繁、日、英;是一个已走向海外的成熟CMS产品Java00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









