Fuzzing101 项目教程
项目介绍
Fuzzing101 是一个由 GitHub Security Lab 发起的 fuzzing 教程项目,旨在帮助初学者和有经验的开发者学习如何进行 fuzzing 测试。该项目提供了 10 个真实的 fuzzing 目标和 10 个练习,涵盖了从基础到高级的 fuzzing 技术。通过这些练习,学习者可以掌握如何使用 AFL++ 等工具进行 fuzzing,并学习如何发现和修复软件中的漏洞。
项目快速启动
1. 克隆项目
首先,克隆 Fuzzing101 项目到本地:
git clone https://github.com/antonio-morales/Fuzzing101.git
cd Fuzzing101
2. 安装依赖
确保你的系统上安装了必要的依赖。以下是一些常见的依赖项:
sudo apt-get update
sudo apt-get install build-essential clang llvm python3
3. 编译目标程序
每个练习都有一个对应的目标程序。以第一个练习为例,编译 Xpdf:
cd Exercise1
CC=/afl/afl-clang-lto CXX=/afl/afl-clang-lto++ ./configure --prefix="/home/xpdf/out"
make
make install
4. 运行 Fuzzing
使用 AFL++ 进行 fuzzing:
/afl/afl-fuzz -i inputs/ -o out -s 123 -- /path/to/pdftotext @@ -
应用案例和最佳实践
案例1:Xpdf 漏洞挖掘
在第一个练习中,目标是通过 fuzzing 发现 Xpdf 中的 CVE-2019-13288 漏洞。通过使用 AFL++ 和 GDB,学习者可以逐步掌握如何进行 fuzzing 并分析崩溃。
案例2:GIMP 持久化模式 Fuzzing
在第六个练习中,目标是对 GIMP 进行 fuzzing。通过使用 Persistent Mode,学习者可以提高 fuzzing 的效率,并发现 GIMP 中的 CVE-2016-4994 漏洞。
最佳实践
- 使用 Persistent Mode:在 fuzzing 带有 GUI 的应用程序时,使用 Persistent Mode 可以显著提高 fuzzing 速度。
- 结合 ASan 和 Sanitizers:在编译目标程序时,启用 AddressSanitizer (ASan) 和其它 sanitizers,可以帮助发现内存相关的漏洞。
- 分析 Crash:使用 GDB 或其他调试工具分析 fuzzing 过程中发现的崩溃,定位漏洞并进行修复。
典型生态项目
1. AFL++
AFL++ 是一个基于 AFL 的 fuzzing 工具,提供了更多的功能和优化。Fuzzing101 项目中广泛使用了 AFL++ 进行 fuzzing。
2. QEMU
QEMU 是一个开源的虚拟机和仿真器。在第七个练习中,使用 AFL 的 QEMU 模式对 Adobe Reader 进行 fuzzing,展示了如何对二进制文件进行 fuzzing。
3. GDB
GDB 是一个强大的调试工具,用于分析 fuzzing 过程中发现的崩溃。通过 GDB,可以深入了解程序的执行流程和崩溃原因。
通过 Fuzzing101 项目,学习者可以系统地学习 fuzzing 技术,并应用到实际的软件安全测试中。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00