TransFuser 项目使用教程
2024-09-13 16:03:16作者:侯霆垣
1. 项目介绍
TransFuser 是一个用于自动驾驶的 Transformer 基础传感器融合机制。该项目通过自注意力机制整合图像和 LiDAR 表示,使用多分辨率 Transformer 模块融合透视图和鸟瞰图特征图。TransFuser 在复杂的驾驶场景中表现出色,尤其是在高密度动态代理的情况下。该项目是 CVPR 2021 论文 "Multi-Modal Fusion Transformer for End-to-End Autonomous Driving" 的扩展,并在 PAMI 2023 中进一步优化。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch 1.11.0+
- CARLA 0.9.10.1+
2.2 克隆项目
git clone https://github.com/autonomousvision/transfuser.git
cd transfuser
2.3 设置 CARLA
chmod +x setup_carla.sh
./setup_carla.sh
2.4 创建并激活 Conda 环境
conda env create -f environment.yml
conda activate tfuse
2.5 安装依赖
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu102.html
pip install mmcv-full==1.5.3 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html
2.6 下载数据集
chmod +x download_data.sh
./download_data.sh
2.7 训练模型
cd team_code_transfuser
python train.py --batch_size 10 --logdir /path/to/logdir --root_dir /path/to/dataset_root/ --parallel_training 0
2.8 评估模型
./CarlaUE4.sh --world-port=2000 -opengl
./leaderboard/scripts/local_evaluation.sh <carla root> <working directory of this repo (*/transfuser/)>
3. 应用案例和最佳实践
3.1 自动驾驶模拟
TransFuser 在 CARLA 模拟器中表现优异,特别是在复杂的交通场景中。通过使用 TransFuser,开发者可以训练出更鲁棒的自动驾驶模型,减少碰撞率。
3.2 多传感器融合
TransFuser 通过 Transformer 机制有效地融合了图像和 LiDAR 数据,为自动驾驶提供了更全面的环境感知能力。
3.3 模型优化
在实际应用中,可以通过调整训练参数和数据增强技术进一步优化 TransFuser 模型,以适应不同的驾驶环境和需求。
4. 典型生态项目
4.1 CARLA
CARLA 是一个开源的自动驾驶模拟器,广泛用于自动驾驶研究和开发。TransFuser 项目充分利用了 CARLA 提供的丰富环境和数据集。
4.2 PyTorch
PyTorch 是一个流行的深度学习框架,TransFuser 项目基于 PyTorch 构建,充分利用了其灵活性和强大的计算能力。
4.3 MMCV
MMCV 是一个用于计算机视觉任务的工具库,TransFuser 项目使用了 MMCV 提供的功能来处理和增强数据。
通过以上步骤,你可以快速上手并使用 TransFuser 项目进行自动驾驶相关的研究和开发。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
681
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1