TransFuser 项目使用教程
2024-09-13 20:32:54作者:侯霆垣
1. 项目介绍
TransFuser 是一个用于自动驾驶的 Transformer 基础传感器融合机制。该项目通过自注意力机制整合图像和 LiDAR 表示,使用多分辨率 Transformer 模块融合透视图和鸟瞰图特征图。TransFuser 在复杂的驾驶场景中表现出色,尤其是在高密度动态代理的情况下。该项目是 CVPR 2021 论文 "Multi-Modal Fusion Transformer for End-to-End Autonomous Driving" 的扩展,并在 PAMI 2023 中进一步优化。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下依赖:
- Python 3.7+
- PyTorch 1.11.0+
- CARLA 0.9.10.1+
2.2 克隆项目
git clone https://github.com/autonomousvision/transfuser.git
cd transfuser
2.3 设置 CARLA
chmod +x setup_carla.sh
./setup_carla.sh
2.4 创建并激活 Conda 环境
conda env create -f environment.yml
conda activate tfuse
2.5 安装依赖
pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu102.html
pip install mmcv-full==1.5.3 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html
2.6 下载数据集
chmod +x download_data.sh
./download_data.sh
2.7 训练模型
cd team_code_transfuser
python train.py --batch_size 10 --logdir /path/to/logdir --root_dir /path/to/dataset_root/ --parallel_training 0
2.8 评估模型
./CarlaUE4.sh --world-port=2000 -opengl
./leaderboard/scripts/local_evaluation.sh <carla root> <working directory of this repo (*/transfuser/)>
3. 应用案例和最佳实践
3.1 自动驾驶模拟
TransFuser 在 CARLA 模拟器中表现优异,特别是在复杂的交通场景中。通过使用 TransFuser,开发者可以训练出更鲁棒的自动驾驶模型,减少碰撞率。
3.2 多传感器融合
TransFuser 通过 Transformer 机制有效地融合了图像和 LiDAR 数据,为自动驾驶提供了更全面的环境感知能力。
3.3 模型优化
在实际应用中,可以通过调整训练参数和数据增强技术进一步优化 TransFuser 模型,以适应不同的驾驶环境和需求。
4. 典型生态项目
4.1 CARLA
CARLA 是一个开源的自动驾驶模拟器,广泛用于自动驾驶研究和开发。TransFuser 项目充分利用了 CARLA 提供的丰富环境和数据集。
4.2 PyTorch
PyTorch 是一个流行的深度学习框架,TransFuser 项目基于 PyTorch 构建,充分利用了其灵活性和强大的计算能力。
4.3 MMCV
MMCV 是一个用于计算机视觉任务的工具库,TransFuser 项目使用了 MMCV 提供的功能来处理和增强数据。
通过以上步骤,你可以快速上手并使用 TransFuser 项目进行自动驾驶相关的研究和开发。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1