首页
/ TransFuser 项目使用教程

TransFuser 项目使用教程

2024-09-13 18:11:48作者:侯霆垣

1. 项目介绍

TransFuser 是一个用于自动驾驶的 Transformer 基础传感器融合机制。该项目通过自注意力机制整合图像和 LiDAR 表示,使用多分辨率 Transformer 模块融合透视图和鸟瞰图特征图。TransFuser 在复杂的驾驶场景中表现出色,尤其是在高密度动态代理的情况下。该项目是 CVPR 2021 论文 "Multi-Modal Fusion Transformer for End-to-End Autonomous Driving" 的扩展,并在 PAMI 2023 中进一步优化。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了以下依赖:

  • Python 3.7+
  • PyTorch 1.11.0+
  • CARLA 0.9.10.1+

2.2 克隆项目

git clone https://github.com/autonomousvision/transfuser.git
cd transfuser

2.3 设置 CARLA

chmod +x setup_carla.sh
./setup_carla.sh

2.4 创建并激活 Conda 环境

conda env create -f environment.yml
conda activate tfuse

2.5 安装依赖

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.11.0+cu102.html
pip install mmcv-full==1.5.3 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.11.0/index.html

2.6 下载数据集

chmod +x download_data.sh
./download_data.sh

2.7 训练模型

cd team_code_transfuser
python train.py --batch_size 10 --logdir /path/to/logdir --root_dir /path/to/dataset_root/ --parallel_training 0

2.8 评估模型

./CarlaUE4.sh --world-port=2000 -opengl
./leaderboard/scripts/local_evaluation.sh <carla root> <working directory of this repo (*/transfuser/)>

3. 应用案例和最佳实践

3.1 自动驾驶模拟

TransFuser 在 CARLA 模拟器中表现优异,特别是在复杂的交通场景中。通过使用 TransFuser,开发者可以训练出更鲁棒的自动驾驶模型,减少碰撞率。

3.2 多传感器融合

TransFuser 通过 Transformer 机制有效地融合了图像和 LiDAR 数据,为自动驾驶提供了更全面的环境感知能力。

3.3 模型优化

在实际应用中,可以通过调整训练参数和数据增强技术进一步优化 TransFuser 模型,以适应不同的驾驶环境和需求。

4. 典型生态项目

4.1 CARLA

CARLA 是一个开源的自动驾驶模拟器,广泛用于自动驾驶研究和开发。TransFuser 项目充分利用了 CARLA 提供的丰富环境和数据集。

4.2 PyTorch

PyTorch 是一个流行的深度学习框架,TransFuser 项目基于 PyTorch 构建,充分利用了其灵活性和强大的计算能力。

4.3 MMCV

MMCV 是一个用于计算机视觉任务的工具库,TransFuser 项目使用了 MMCV 提供的功能来处理和增强数据。

通过以上步骤,你可以快速上手并使用 TransFuser 项目进行自动驾驶相关的研究和开发。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysqlxzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChatLangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admingin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vuesource-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madongmadong
基于Webman的权限管理系统
PHP
4
0
cool-admin-javacool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2