Stable Diffusion gRPC Server 使用教程
2024-09-12 11:51:05作者:薛曦旖Francesca
1. 项目介绍
stable-diffusion-grpcserver 是一个基于 Stability AI Stable Diffusion API 的服务器实现。该项目允许用户通过 gRPC 协议与 Stable Diffusion 模型进行交互,支持多种图像生成功能,包括文本到图像(txt2img)、图像到图像(img2img)、图像修复(inpainting)和图像扩展(outpainting)等。此外,该项目还提供了一些增强功能,如自定义 CLIP 指导、负提示和模型调度器等。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Docker 和 Nvidia GPU(至少 4GB VRAM)。
2.2 启动 Docker 容器
使用以下命令启动 Docker 容器:
docker run --gpus all -it -p 50051:50051 \
-e HF_API_TOKEN=[your huggingface token] \
-e SD_LISTEN_TO_ALL=1 \
-v $HOME/cache/huggingface:/huggingface \
-v `pwd`/weights:/weights \
hafriedlander/stable-diffusion-grpcserver:xformers-latest
2.3 本地启动
如果你不想使用 Docker,也可以在本地启动服务。首先安装 Miniconda,然后在 Conda 环境中执行以下命令:
git clone https://github.com/hafriedlander/stable-diffusion-grpcserver.git
cd stable-diffusion-grpcserver
conda env create -f environment.yaml
conda activate sd-grpc-server
# 设置 Hugging Face API Token
set HF_API_TOKEN=[your huggingface token]
# 启动服务器
python ./server.py
3. 应用案例和最佳实践
3.1 文本到图像生成
使用 txt2img 功能生成图像:
from client import StableDiffusionClient
client = StableDiffusionClient(host='localhost', port=50051)
prompt = "A futuristic cityscape at sunset"
image = client.txt2img(prompt)
image.save("output.png")
3.2 图像修复
使用 inpainting 功能修复图像:
from client import StableDiffusionClient
client = StableDiffusionClient(host='localhost', port=50051)
image_path = "input.png"
mask_path = "mask.png"
prompt = "A beautiful garden"
image = client.inpaint(image_path, mask_path, prompt)
image.save("output_inpainted.png")
3.3 负提示
使用负提示生成图像:
from client import StableDiffusionClient
client = StableDiffusionClient(host='localhost', port=50051)
prompt = "A futuristic cityscape at sunset"
negative_prompt = "blurry, low quality"
image = client.txt2img(prompt, negative_prompt=negative_prompt)
image.save("output_negative.png")
4. 典型生态项目
4.1 Seamless Outpainting
Seamless Outpainting 是一个用于无缝扩展图像的项目,可以与 stable-diffusion-grpcserver 结合使用,提供更好的图像扩展效果。
4.2 CLIP Interrogator
CLIP Interrogator 是一个用于计算图像和文本之间相似度的工具,可以与 stable-diffusion-grpcserver 结合使用,提供更准确的提示生成。
4.3 MagicPrompt
MagicPrompt 是一个用于生成创意提示的工具,可以与 stable-diffusion-grpcserver 结合使用,提供更多样化的图像生成效果。
通过这些生态项目的结合,stable-diffusion-grpcserver 可以实现更复杂和多样化的图像生成任务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248