Blender-Addon-Photogrammetry-Importer 使用教程
1. 项目介绍
Blender-Addon-Photogrammetry-Importer 是一个开源的 Blender 插件,旨在帮助用户导入由多种 Structure from Motion (SfM) 和 Multi-View Stereo (MVS) 库生成的重建结果。该插件支持多种数据格式,包括 Colmap、Meshroom、Open3D、OpenSfM 等,并且还支持常见的点云数据格式如 PLY、PCD、LAS 等。通过这个插件,用户可以轻松地将这些重建结果导入到 Blender 中进行进一步的编辑和渲染。
2. 项目快速启动
2.1 安装插件
-
下载插件: 从 GitHub 仓库下载最新版本的插件:Blender-Addon-Photogrammetry-Importer。
-
安装插件: 打开 Blender,进入
编辑->偏好设置->插件->安装,选择下载的插件 ZIP 文件进行安装。 -
启用插件: 在插件列表中找到
Blender-Addon-Photogrammetry-Importer,勾选启用。
2.2 导入数据
以下是一个简单的 Python 脚本示例,展示如何使用该插件导入数据:
import bpy
# 选择要导入的数据文件
file_path = "/path/to/your/data/file.ply"
# 导入数据
bpy.ops.import_mesh.ply(filepath=file_path)
# 调整视图
bpy.ops.view3d.view_all()
3. 应用案例和最佳实践
3.1 案例一:导入 Colmap 重建结果
假设你已经使用 Colmap 完成了一个场景的重建,生成了一个包含相机姿态和点云的模型文件夹。你可以使用该插件将这些结果导入到 Blender 中:
-
选择文件夹: 在 Blender 中,选择
文件->导入->Colmap Model,然后选择你的 Colmap 模型文件夹。 -
调整视图: 导入后,你可以使用 Blender 的视图工具来调整相机视角和点云的显示效果。
3.2 案例二:使用 Meshroom 进行重建
如果你使用 Meshroom 进行重建,生成了一个包含 SfM 和 MVS 结果的文件夹,你可以使用该插件导入这些结果:
-
选择文件夹: 在 Blender 中,选择
文件->导入->Meshroom SfM,然后选择你的 Meshroom 文件夹。 -
渲染结果: 导入后,你可以使用 Blender 的渲染工具来生成高质量的渲染图像。
4. 典型生态项目
4.1 OpenMVG
OpenMVG 是一个开源的 SfM 库,广泛用于计算机视觉和摄影测量领域。Blender-Addon-Photogrammetry-Importer 支持导入 OpenMVG 生成的 JSON 和 NVM 文件,使得用户可以在 Blender 中进一步处理和渲染这些重建结果。
4.2 Open3D
Open3D 是一个强大的开源库,用于处理 3D 数据。Blender-Addon-Photogrammetry-Importer 支持导入 Open3D 生成的 JSON 和 PLY 文件,使得用户可以在 Blender 中进行点云的可视化和编辑。
4.3 Colmap
Colmap 是一个先进的 SfM 和 MVS 库,广泛用于三维重建任务。Blender-Addon-Photogrammetry-Importer 支持导入 Colmap 生成的模型文件夹,使得用户可以在 Blender 中进行高质量的三维重建和渲染。
通过这些生态项目的支持,Blender-Addon-Photogrammetry-Importer 为用户提供了一个强大的工具集,用于处理和可视化各种三维重建数据。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00