Video-3D LLM 项目启动与配置教程
2025-05-17 12:16:41作者:苗圣禹Peter
1. 项目目录结构及介绍
Video-3D LLM 项目的目录结构如下:
Video-3D-LLM/
├── assets/ # 存储项目相关资源
├── scripts/ # 包含训练和评估的脚本
├── trl/ # 存储训练相关代码
├── .gitignore # 指定git忽略的文件
├── LICENSE # 项目的Apache-2.0许可文件
├── README.md # 项目的说明文件
├── pyproject.toml # 项目配置文件
assets/:包含项目所需的数据集和其他资源。scripts/:包含用于训练和评估模型的脚本文件。trl/:包含了模型训练和推理的代码。.gitignore:定义了Git应该忽略的文件和目录。LICENSE:Apache-2.0许可,规定了如何使用和分发这个项目。README.md:提供了项目的基本信息和如何开始。pyproject.toml:包含了项目依赖和其他元数据。
2. 项目的启动文件介绍
项目的启动主要通过命令行脚本进行。以下是一些基本的启动命令:
# 克隆仓库
git clone https://github.com/LaVi-Lab/Video-3D-LLM.git
cd Video-3D-LLM
# 创建conda环境
conda create -n video3dllm python=3.10 -y
conda activate video3dllm
# 安装依赖
pip install --upgrade pip
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
git clone:克隆仓库到本地。conda create:创建一个隔离的Python环境。pip install:安装项目所需的Python包。
3. 项目的配置文件介绍
项目的配置主要通过pyproject.toml文件进行。这个文件定义了项目的依赖和其他元数据。以下是一个pyproject.toml的示例:
[build-system]
requires = ["setuptools", "wheel"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
name = "video3d-llm"
version = "0.1.0"
description = "Video-3D LLM for 3D Scene Understanding"
long_description = """
Video-3D LLM is a novel generalist model for 3D scene understanding.
"""
author = "Duo Zheng, Shijia Huang, Liwei Wang"
author_email = "your.email@example.com"
url = "https://github.com/LaVi-Lab/Video-3D-LLM"
classifiers = [
"Programming Language :: Python :: 3",
"License :: OSI Approved :: Apache Software License",
]
dependency_links = [
"https://example.com/dependency"
]
install_requires = [
"numpy",
"torch",
# 其他依赖
]
在这个配置文件中,你可以定义项目的名称、版本、描述、作者、邮箱、网址和依赖等。这些信息被用来构建和打包项目,也被上传到Python包索引(PyPI)。
通过上述步骤,你可以成功地启动和配置Video-3D LLM项目,并开始进行3D场景理解相关的开发工作。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250