Video-3D-LLM 的项目扩展与二次开发
2025-05-17 06:00:13作者:段琳惟
1. 项目的基础介绍
Video-3D-LLM 是一个开源项目,旨在通过将3D场景视为动态视频并引入3D位置编码,为3D场景理解提供更为准确的视频表示。该项目由香港中文大学的研究团队开发,并在CVPR 2025上发表相关论文。项目通过优化Multimodal Large Language Models (MLLMs)在3D环境中的空间理解能力,实现了在多个3D场景理解基准测试中的领先性能。
2. 项目的核心功能
Video-3D-LLM 的核心功能在于学习位置感知的视频表示,以便更好地理解3D场景。它通过以下方式实现:
- 将3D场景转化为动态视频进行处理。
- 引入3D位置编码,增强模型对空间位置的理解。
- 实现最大覆盖采样技术,优化计算成本与性能效率的平衡。
3. 项目使用了哪些框架或库?
Video-3D-LLM 项目主要使用了以下框架或库:
- Python:作为主要的编程语言。
- Conda:用于创建隔离的Python运行环境。
- Pip:用于安装Python包。
- LLaVA-Next:作为代码库的基础。
- Flash Attention:用于加速注意力机制的实现。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
assets/:存储项目相关的资源文件。llava/:包含LLaVA模型的代码。scripts/:存放各种脚本文件,包括训练和评估脚本。trl/:可能包含项目的训练相关代码。.gitignore:指定Git忽略的文件和目录。LICENSE:项目的许可文件,该项目采用Apache-2.0协议。README.md:项目的说明文件,包含项目的基本信息和使用指南。pyproject.toml:定义项目的构建系统和依赖。
5. 对项目进行扩展或者二次开发的方向
对于Video-3D-LLM项目的扩展或二次开发,以下是一些可能的方向:
- 模型优化:进一步优化模型结构,提高其对3D场景的理解能力。
- 数据增强:引入更多的数据集和增强数据预处理方法,以提高模型的泛化能力。
- 跨领域应用:将Video-3D-LLM模型应用于其他需要3D场景理解的领域,如机器人导航、增强现实等。
- 性能提升:优化模型的计算效率,减少计算资源需求,使其更适用于实际应用。
- 交互式应用:开发交互式应用,使用户能够通过模型与3D场景进行互动。
通过这些扩展和二次开发,Video-3D-LLM项目有望在3D场景理解领域发挥更大的作用。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
340
404
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247