Video-3D-LLM 的项目扩展与二次开发
2025-05-17 16:38:16作者:段琳惟
1. 项目的基础介绍
Video-3D-LLM 是一个开源项目,旨在通过将3D场景视为动态视频并引入3D位置编码,为3D场景理解提供更为准确的视频表示。该项目由香港中文大学的研究团队开发,并在CVPR 2025上发表相关论文。项目通过优化Multimodal Large Language Models (MLLMs)在3D环境中的空间理解能力,实现了在多个3D场景理解基准测试中的领先性能。
2. 项目的核心功能
Video-3D-LLM 的核心功能在于学习位置感知的视频表示,以便更好地理解3D场景。它通过以下方式实现:
- 将3D场景转化为动态视频进行处理。
- 引入3D位置编码,增强模型对空间位置的理解。
- 实现最大覆盖采样技术,优化计算成本与性能效率的平衡。
3. 项目使用了哪些框架或库?
Video-3D-LLM 项目主要使用了以下框架或库:
- Python:作为主要的编程语言。
- Conda:用于创建隔离的Python运行环境。
- Pip:用于安装Python包。
- LLaVA-Next:作为代码库的基础。
- Flash Attention:用于加速注意力机制的实现。
4. 项目的代码目录及介绍
项目的代码目录结构如下:
assets/:存储项目相关的资源文件。llava/:包含LLaVA模型的代码。scripts/:存放各种脚本文件,包括训练和评估脚本。trl/:可能包含项目的训练相关代码。.gitignore:指定Git忽略的文件和目录。LICENSE:项目的许可文件,该项目采用Apache-2.0协议。README.md:项目的说明文件,包含项目的基本信息和使用指南。pyproject.toml:定义项目的构建系统和依赖。
5. 对项目进行扩展或者二次开发的方向
对于Video-3D-LLM项目的扩展或二次开发,以下是一些可能的方向:
- 模型优化:进一步优化模型结构,提高其对3D场景的理解能力。
- 数据增强:引入更多的数据集和增强数据预处理方法,以提高模型的泛化能力。
- 跨领域应用:将Video-3D-LLM模型应用于其他需要3D场景理解的领域,如机器人导航、增强现实等。
- 性能提升:优化模型的计算效率,减少计算资源需求,使其更适用于实际应用。
- 交互式应用:开发交互式应用,使用户能够通过模型与3D场景进行互动。
通过这些扩展和二次开发,Video-3D-LLM项目有望在3D场景理解领域发挥更大的作用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
137
169
React Native鸿蒙化仓库
JavaScript
235
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
631
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
688
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
仓颉编程语言测试用例。
Cangjie
36
688