Video-3D LLM 开源项目最佳实践教程
2025-05-17 09:55:28作者:鲍丁臣Ursa
1. 项目介绍
Video-3D LLM 是一个用于 3D 场景理解的新型通用模型。该模型将 3D 场景视为动态视频,并引入 3D 位置编码,使视频表示与现实世界空间上下文更加准确对齐。Video-3D LLM 通过优化计算成本和性能效率的平衡,实现了在多个 3D 场景理解基准测试上的领先性能,包括 ScanRefer、Multi3DRefer、Scan2Cap、ScanQA 和 SQA3D。
2. 项目快速启动
克隆仓库
首先,克隆 Video-3D LLM 的 GitHub 仓库:
git clone https://github.com/LaVi-Lab/Video-3D-LLM.git
cd Video-3D-LLM
创建虚拟环境
创建并激活 Conda 虚拟环境:
conda create -n video3dllm python=3.10 -y
conda activate video3dllm
安装依赖
安装所需的 Python 包:
pip install --upgrade pip
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
数据准备
请参考项目提供的详细数据准备说明。
训练模型
使用以下命令进行全量微调训练:
sh scripts/3d/train/train_multi.sh
评估模型
使用指定的检查点和帧采样策略评估模型性能:
sh scripts/3d/eval/eval_scan2cap.sh <CKPT_NAME> <SAMPLING_STRATEGY> <MAX_FRAMES>
CKPT_NAME: 用于评估的模型检查点路径SAMPLING_STRATEGY: 帧采样策略(选项:uniform, ratio90, ratio95)MAX_FRAMES: 使用的最大帧数(采样上限)
例如:
sh scripts/3d/eval/eval_scan2cap.sh $CKPT uniform 32
3. 应用案例和最佳实践
应用案例
Video-3D LLM 可用于多种 3D 场景理解任务,如物体识别、场景分割、姿态估计等。以下是一些应用案例:
- 使用 Video-3D LLM 进行室内场景的物体检测和分类。
- 利用 Video-3D LLM 支持的动态视频表示,进行机器人导航和交互。
最佳实践
- 数据质量: 确保训练数据的质量和多样性,以便模型能够学习到丰富的空间特征。
- 帧采样策略: 选择合适的帧采样策略,如 uniform、ratio90 或 ratio95,以平衡性能和计算成本。
- 模型微调: 根据具体应用场景对模型进行微调,以获得最佳性能。
4. 典型生态项目
以下是一些与 Video-3D LLM 相关的典型生态项目:
- LLaVA-Next: Video-3D LLM 的代码库基于 LLaVA-Next 构建。
- LLaVA-3D、LEO、EmbodiedScan: 这些项目为数据处理和评估设置提供了参考。
- ScanNet、ScanRefer、Multi3DRefer、SQA3D、ScanQA: 这些数据集用于模型的训练和评估。
通过结合 Video-3D LLM 和这些生态项目,可以进一步扩展和增强 3D 场景理解的应用。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217