Video-3D LLM 开源项目最佳实践教程
2025-05-17 18:57:25作者:鲍丁臣Ursa
1. 项目介绍
Video-3D LLM 是一个用于 3D 场景理解的新型通用模型。该模型将 3D 场景视为动态视频,并引入 3D 位置编码,使视频表示与现实世界空间上下文更加准确对齐。Video-3D LLM 通过优化计算成本和性能效率的平衡,实现了在多个 3D 场景理解基准测试上的领先性能,包括 ScanRefer、Multi3DRefer、Scan2Cap、ScanQA 和 SQA3D。
2. 项目快速启动
克隆仓库
首先,克隆 Video-3D LLM 的 GitHub 仓库:
git clone https://github.com/LaVi-Lab/Video-3D-LLM.git
cd Video-3D-LLM
创建虚拟环境
创建并激活 Conda 虚拟环境:
conda create -n video3dllm python=3.10 -y
conda activate video3dllm
安装依赖
安装所需的 Python 包:
pip install --upgrade pip
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
数据准备
请参考项目提供的详细数据准备说明。
训练模型
使用以下命令进行全量微调训练:
sh scripts/3d/train/train_multi.sh
评估模型
使用指定的检查点和帧采样策略评估模型性能:
sh scripts/3d/eval/eval_scan2cap.sh <CKPT_NAME> <SAMPLING_STRATEGY> <MAX_FRAMES>
CKPT_NAME: 用于评估的模型检查点路径SAMPLING_STRATEGY: 帧采样策略(选项:uniform, ratio90, ratio95)MAX_FRAMES: 使用的最大帧数(采样上限)
例如:
sh scripts/3d/eval/eval_scan2cap.sh $CKPT uniform 32
3. 应用案例和最佳实践
应用案例
Video-3D LLM 可用于多种 3D 场景理解任务,如物体识别、场景分割、姿态估计等。以下是一些应用案例:
- 使用 Video-3D LLM 进行室内场景的物体检测和分类。
- 利用 Video-3D LLM 支持的动态视频表示,进行机器人导航和交互。
最佳实践
- 数据质量: 确保训练数据的质量和多样性,以便模型能够学习到丰富的空间特征。
- 帧采样策略: 选择合适的帧采样策略,如 uniform、ratio90 或 ratio95,以平衡性能和计算成本。
- 模型微调: 根据具体应用场景对模型进行微调,以获得最佳性能。
4. 典型生态项目
以下是一些与 Video-3D LLM 相关的典型生态项目:
- LLaVA-Next: Video-3D LLM 的代码库基于 LLaVA-Next 构建。
- LLaVA-3D、LEO、EmbodiedScan: 这些项目为数据处理和评估设置提供了参考。
- ScanNet、ScanRefer、Multi3DRefer、SQA3D、ScanQA: 这些数据集用于模型的训练和评估。
通过结合 Video-3D LLM 和这些生态项目,可以进一步扩展和增强 3D 场景理解的应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1