在PyKAN项目中提取模型预测值的技术方法
2025-05-14 23:37:00作者:余洋婵Anita
概述
PyKAN作为一个基于Kolmogorov-Arnold Networks(KAN)的Python实现项目,为研究人员提供了强大的非线性建模能力。在实际应用中,如何从训练好的KAN模型中提取预测值是一个常见需求。本文将详细介绍在PyKAN项目中获取模型预测结果的几种技术方法。
模型预测的基本原理
KAN模型基于Kolmogorov-Arnold表示定理构建,通过神经网络结构实现了对复杂非线性函数的逼近。模型的预测过程本质上是通过网络前向传播(forward pass)计算输入数据对应的输出值。
获取预测值的方法
1. 推理专用模式(Inference-only Mode)
这是最常用的预测值获取方式,适用于已经训练完成的模型:
- 训练并保存模型:首先完成模型的训练过程,使用
torch.save()保存模型参数 - 加载模型参数:在推理阶段,创建相同结构的模型实例,加载保存的参数
- 准备输入数据:将待预测数据转换为合适的张量格式
- 前向传播计算:直接调用模型的
forward()方法或简单地对输入数据应用模型
# 模型训练和保存
model = KAN(...)
# ...训练过程...
torch.save(model.state_dict(), 'model.pth')
# 推理阶段
model = KAN(...) # 相同结构
model.load_state_dict(torch.load('model.pth'))
inputs = ... # 准备输入数据
predictions = model(inputs) # 获取预测值
2. 训练过程中获取预测值
在某些场景下,我们需要在训练过程中监控模型的预测表现:
使用Adam/SGD优化器时
当使用基于梯度的优化方法(如Adam、SGD)时,可以直接在训练循环中获取预测值:
for epoch in range(epochs):
# 前向传播
outputs = model(inputs)
# outputs即为当前模型对inputs的预测值
loss = criterion(outputs, targets)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
使用LBFGS优化器时
LBFGS优化器需要特殊的闭包(closure)函数,获取预测值需要在闭包内部进行:
def closure():
optimizer.zero_grad()
outputs = model(inputs) # 获取预测值
loss = criterion(outputs, targets)
loss.backward()
return loss
optimizer.step(closure)
# 注意:闭包外的outputs不可见,需要在闭包内处理预测值
技术细节与注意事项
- 数据预处理一致性:确保推理阶段的数据预处理方式与训练阶段完全一致
- 模型模式切换:在推理前调用
model.eval(),训练时调用model.train() - 批量处理效率:对于大规模数据,合理设置批量大小以提高预测效率
- GPU加速:如果使用GPU训练,确保推理时数据也转移到相同设备
- 梯度计算:在纯推理场景下,可以使用
torch.no_grad()上下文管理器减少内存消耗
实际应用建议
对于遗传数据分析等科学计算场景,建议:
- 建立完整的训练-验证-测试流程
- 在关键训练阶段保存模型快照
- 实现自动化的预测结果导出功能
- 对预测结果进行可视化分析,验证模型的有效性
通过合理运用上述方法,研究人员可以充分利用PyKAN项目的强大功能,从训练好的KAN模型中高效地提取预测值,为后续分析提供可靠的数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1