PyKAN项目中数据归一化参数提取的技术解析
2025-05-14 11:46:49作者:蔡丛锟
在机器学习项目中,数据预处理是构建高效模型的关键步骤之一。PyKAN项目中的create_dataset函数提供了数据归一化功能,但很多开发者在使用过程中会遇到如何获取归一化参数的问题。本文将深入分析这一问题,并提供专业的技术解决方案。
数据归一化的重要性
数据归一化是机器学习预处理中的标准操作,它通过将特征缩放到相似的数值范围来帮助模型更好地学习。在PyKAN项目中,create_dataset函数实现了两种归一化方式:
- 输入数据归一化(normalize_input)
- 标签数据归一化(normalize_label)
归一化通常采用Z-score标准化方法,即对数据进行减去均值再除以标准差的处理。这种处理能够使数据服从标准正态分布,有利于神经网络的训练。
归一化参数获取的技术实现
PyKAN原生的create_dataset函数在归一化处理后,默认不返回归一化参数。这对于需要后续使用这些参数进行预测或评估的场景带来了不便。我们可以通过修改函数实现来获取这些关键参数。
技术实现要点
- 参数存储:在归一化过程中,将计算得到的均值和标准差保存到字典中
- 可选返回:通过
return_stats参数控制是否返回归一化统计量 - 设备兼容性:确保统计量与数据在同一设备上(CPU/GPU)
代码实现解析
def create_dataset(f, n_var=2, ranges=[-1,1], train_num=1000, test_num=1000,
normalize_input=False, normalize_label=False,
return_stats=False, device='cpu', seed=0):
# 初始化随机种子
np.random.seed(seed)
torch.manual_seed(seed)
# 处理输入范围
if len(np.array(ranges).shape) == 1:
ranges = np.array(ranges * n_var).reshape(n_var,2)
else:
ranges = np.array(ranges)
# 生成训练和测试数据
train_input = torch.zeros(train_num, n_var)
test_input = torch.zeros(test_num, n_var)
for i in range(n_var):
train_input[:,i] = torch.rand(train_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
test_input[:,i] = torch.rand(test_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
# 计算标签
train_label = f(train_input)
test_label = f(test_input)
# 归一化辅助函数
def normalize(data, mean, std):
return (data-mean)/std
# 存储统计量
stats = {}
# 输入归一化处理
if normalize_input:
mean_input = torch.mean(train_input, dim=0, keepdim=True)
std_input = torch.std(train_input, dim=0, keepdim=True)
train_input = normalize(train_input, mean_input, std_input)
test_input = normalize(test_input, mean_input, std_input)
stats['mean_input'] = mean_input
stats['std_input'] = std_input
# 标签归一化处理
if normalize_label:
mean_label = torch.mean(train_label, dim=0, keepdim=True)
std_label = torch.std(train_label, dim=0, keepdim=True)
train_label = normalize(train_label, mean_label, std_label)
test_label = normalize(test_label, mean_label, std_label)
stats['mean_label'] = mean_label
stats['std_label'] = std_label
# 构建返回数据集
dataset = {
'train_input': train_input.to(device),
'test_input': test_input.to(device),
'train_label': train_label.to(device),
'test_label': test_label.to(device)
}
# 根据参数决定返回内容
if return_stats and (normalize_input or normalize_label):
return dataset, stats
return dataset
实际应用场景
获取归一化参数在实际项目中有多种重要用途:
- 预测阶段的数据处理:对新数据进行与训练数据相同的归一化处理
- 结果反归一化:将模型输出的归一化结果转换回原始量纲
- 模型部署:在生产环境中保持与训练一致的数据处理流程
- 模型解释:理解特征在原始尺度上的重要性
最佳实践建议
- 参数保存:建议将归一化参数与模型一起保存,确保部署时的一致性
- 数据泄露防范:只使用训练数据计算归一化参数,避免使用测试数据
- 异常值处理:对于存在极端值的数据,考虑使用RobustScaler等更健壮的归一化方法
- 多设备支持:确保归一化参数与模型在同一设备上,避免设备不匹配问题
总结
通过修改PyKAN的create_dataset函数,我们实现了归一化参数的提取功能,为机器学习项目的全流程提供了更好的支持。这一改进不仅解决了原始功能中的参数获取问题,还为模型训练、评估和部署提供了更完整的数据处理方案。在实际项目中,合理使用这些归一化参数能够显著提高模型的性能和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
ISO12233-2017 Resolution and SFR 影像分辨率空间频率响应测量标准:专业的影像测量利器 JLink-Windows-V798c-x86-64下载介绍:最新JFLASH烧录软件,提升编程效率 西克激光雷达LMS511系列中文操作手册:详尽指南助力高效应用 书生阅读器7.3版Windows10兼容版:优化阅读体验,畅享每一本书 NC系列数据字典全量资源下载:一键获取全量数据,助力开发效率提升 MySQLInnoDB数据恢复工具:高效挽救数据库数据的利器 虚拟机Windows7VMwareTools安装补丁:让虚拟机运行更流畅 Klayout-0.26.9-win64-install.exe.zip资源下载介绍:开源EDA工具,助力集成电路设计 Vosk中文model资源:实现中文语音识别的核心功能 开源推荐:基于Vue3+ts+element-plus+AntV X6的流程图编辑器源码
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134