PyKAN项目中数据归一化参数提取的技术解析
2025-05-14 02:05:00作者:蔡丛锟
在机器学习项目中,数据预处理是构建高效模型的关键步骤之一。PyKAN项目中的create_dataset函数提供了数据归一化功能,但很多开发者在使用过程中会遇到如何获取归一化参数的问题。本文将深入分析这一问题,并提供专业的技术解决方案。
数据归一化的重要性
数据归一化是机器学习预处理中的标准操作,它通过将特征缩放到相似的数值范围来帮助模型更好地学习。在PyKAN项目中,create_dataset函数实现了两种归一化方式:
- 输入数据归一化(normalize_input)
- 标签数据归一化(normalize_label)
归一化通常采用Z-score标准化方法,即对数据进行减去均值再除以标准差的处理。这种处理能够使数据服从标准正态分布,有利于神经网络的训练。
归一化参数获取的技术实现
PyKAN原生的create_dataset函数在归一化处理后,默认不返回归一化参数。这对于需要后续使用这些参数进行预测或评估的场景带来了不便。我们可以通过修改函数实现来获取这些关键参数。
技术实现要点
- 参数存储:在归一化过程中,将计算得到的均值和标准差保存到字典中
- 可选返回:通过
return_stats参数控制是否返回归一化统计量 - 设备兼容性:确保统计量与数据在同一设备上(CPU/GPU)
代码实现解析
def create_dataset(f, n_var=2, ranges=[-1,1], train_num=1000, test_num=1000,
normalize_input=False, normalize_label=False,
return_stats=False, device='cpu', seed=0):
# 初始化随机种子
np.random.seed(seed)
torch.manual_seed(seed)
# 处理输入范围
if len(np.array(ranges).shape) == 1:
ranges = np.array(ranges * n_var).reshape(n_var,2)
else:
ranges = np.array(ranges)
# 生成训练和测试数据
train_input = torch.zeros(train_num, n_var)
test_input = torch.zeros(test_num, n_var)
for i in range(n_var):
train_input[:,i] = torch.rand(train_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
test_input[:,i] = torch.rand(test_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
# 计算标签
train_label = f(train_input)
test_label = f(test_input)
# 归一化辅助函数
def normalize(data, mean, std):
return (data-mean)/std
# 存储统计量
stats = {}
# 输入归一化处理
if normalize_input:
mean_input = torch.mean(train_input, dim=0, keepdim=True)
std_input = torch.std(train_input, dim=0, keepdim=True)
train_input = normalize(train_input, mean_input, std_input)
test_input = normalize(test_input, mean_input, std_input)
stats['mean_input'] = mean_input
stats['std_input'] = std_input
# 标签归一化处理
if normalize_label:
mean_label = torch.mean(train_label, dim=0, keepdim=True)
std_label = torch.std(train_label, dim=0, keepdim=True)
train_label = normalize(train_label, mean_label, std_label)
test_label = normalize(test_label, mean_label, std_label)
stats['mean_label'] = mean_label
stats['std_label'] = std_label
# 构建返回数据集
dataset = {
'train_input': train_input.to(device),
'test_input': test_input.to(device),
'train_label': train_label.to(device),
'test_label': test_label.to(device)
}
# 根据参数决定返回内容
if return_stats and (normalize_input or normalize_label):
return dataset, stats
return dataset
实际应用场景
获取归一化参数在实际项目中有多种重要用途:
- 预测阶段的数据处理:对新数据进行与训练数据相同的归一化处理
- 结果反归一化:将模型输出的归一化结果转换回原始量纲
- 模型部署:在生产环境中保持与训练一致的数据处理流程
- 模型解释:理解特征在原始尺度上的重要性
最佳实践建议
- 参数保存:建议将归一化参数与模型一起保存,确保部署时的一致性
- 数据泄露防范:只使用训练数据计算归一化参数,避免使用测试数据
- 异常值处理:对于存在极端值的数据,考虑使用RobustScaler等更健壮的归一化方法
- 多设备支持:确保归一化参数与模型在同一设备上,避免设备不匹配问题
总结
通过修改PyKAN的create_dataset函数,我们实现了归一化参数的提取功能,为机器学习项目的全流程提供了更好的支持。这一改进不仅解决了原始功能中的参数获取问题,还为模型训练、评估和部署提供了更完整的数据处理方案。在实际项目中,合理使用这些归一化参数能够显著提高模型的性能和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
200
81
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
274
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
107
120