PyKAN项目中数据归一化参数提取的技术解析
2025-05-14 07:20:00作者:蔡丛锟
在机器学习项目中,数据预处理是构建高效模型的关键步骤之一。PyKAN项目中的create_dataset
函数提供了数据归一化功能,但很多开发者在使用过程中会遇到如何获取归一化参数的问题。本文将深入分析这一问题,并提供专业的技术解决方案。
数据归一化的重要性
数据归一化是机器学习预处理中的标准操作,它通过将特征缩放到相似的数值范围来帮助模型更好地学习。在PyKAN项目中,create_dataset
函数实现了两种归一化方式:
- 输入数据归一化(normalize_input)
- 标签数据归一化(normalize_label)
归一化通常采用Z-score标准化方法,即对数据进行减去均值再除以标准差的处理。这种处理能够使数据服从标准正态分布,有利于神经网络的训练。
归一化参数获取的技术实现
PyKAN原生的create_dataset
函数在归一化处理后,默认不返回归一化参数。这对于需要后续使用这些参数进行预测或评估的场景带来了不便。我们可以通过修改函数实现来获取这些关键参数。
技术实现要点
- 参数存储:在归一化过程中,将计算得到的均值和标准差保存到字典中
- 可选返回:通过
return_stats
参数控制是否返回归一化统计量 - 设备兼容性:确保统计量与数据在同一设备上(CPU/GPU)
代码实现解析
def create_dataset(f, n_var=2, ranges=[-1,1], train_num=1000, test_num=1000,
normalize_input=False, normalize_label=False,
return_stats=False, device='cpu', seed=0):
# 初始化随机种子
np.random.seed(seed)
torch.manual_seed(seed)
# 处理输入范围
if len(np.array(ranges).shape) == 1:
ranges = np.array(ranges * n_var).reshape(n_var,2)
else:
ranges = np.array(ranges)
# 生成训练和测试数据
train_input = torch.zeros(train_num, n_var)
test_input = torch.zeros(test_num, n_var)
for i in range(n_var):
train_input[:,i] = torch.rand(train_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
test_input[:,i] = torch.rand(test_num,)*(ranges[i,1]-ranges[i,0])+ranges[i,0]
# 计算标签
train_label = f(train_input)
test_label = f(test_input)
# 归一化辅助函数
def normalize(data, mean, std):
return (data-mean)/std
# 存储统计量
stats = {}
# 输入归一化处理
if normalize_input:
mean_input = torch.mean(train_input, dim=0, keepdim=True)
std_input = torch.std(train_input, dim=0, keepdim=True)
train_input = normalize(train_input, mean_input, std_input)
test_input = normalize(test_input, mean_input, std_input)
stats['mean_input'] = mean_input
stats['std_input'] = std_input
# 标签归一化处理
if normalize_label:
mean_label = torch.mean(train_label, dim=0, keepdim=True)
std_label = torch.std(train_label, dim=0, keepdim=True)
train_label = normalize(train_label, mean_label, std_label)
test_label = normalize(test_label, mean_label, std_label)
stats['mean_label'] = mean_label
stats['std_label'] = std_label
# 构建返回数据集
dataset = {
'train_input': train_input.to(device),
'test_input': test_input.to(device),
'train_label': train_label.to(device),
'test_label': test_label.to(device)
}
# 根据参数决定返回内容
if return_stats and (normalize_input or normalize_label):
return dataset, stats
return dataset
实际应用场景
获取归一化参数在实际项目中有多种重要用途:
- 预测阶段的数据处理:对新数据进行与训练数据相同的归一化处理
- 结果反归一化:将模型输出的归一化结果转换回原始量纲
- 模型部署:在生产环境中保持与训练一致的数据处理流程
- 模型解释:理解特征在原始尺度上的重要性
最佳实践建议
- 参数保存:建议将归一化参数与模型一起保存,确保部署时的一致性
- 数据泄露防范:只使用训练数据计算归一化参数,避免使用测试数据
- 异常值处理:对于存在极端值的数据,考虑使用RobustScaler等更健壮的归一化方法
- 多设备支持:确保归一化参数与模型在同一设备上,避免设备不匹配问题
总结
通过修改PyKAN的create_dataset
函数,我们实现了归一化参数的提取功能,为机器学习项目的全流程提供了更好的支持。这一改进不仅解决了原始功能中的参数获取问题,还为模型训练、评估和部署提供了更完整的数据处理方案。在实际项目中,合理使用这些归一化参数能够显著提高模型的性能和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133