Ragas项目中Agentic AI指标评估问题的分析与解决
2025-05-26 14:58:39作者:钟日瑜
问题背景
在Ragas项目(一个用于评估AI生成内容质量的Python库)的使用过程中,开发者在尝试评估Agentic AI指标(特别是主题一致性和代理目标准确性)时遇到了技术障碍。这个问题主要出现在使用AzureChatOpenAI作为语言模型的情况下,当尝试运行AgentGoalAccuracyWithReference等代理相关指标时,系统会抛出"TypeError: object of type 'StringPromptValue' has no len()"的错误。
错误现象分析
该错误通常发生在以下场景中:
- 开发者使用AzureChatOpenAI实例直接作为评分器的语言模型
- 尝试评估多轮对话样本(MultiTurnSample)的代理目标准确性
- 系统在处理提示值时,错误地将StringPromptValue对象当作可测量长度的序列来处理
错误堆栈显示问题起源于LangChain核心库的chat_models.py文件,当尝试获取消息批处理大小时,系统无法正确处理StringPromptValue类型的对象。
根本原因
经过深入分析,问题的核心在于:
- Ragas库与LangChain库在消息处理机制上存在不兼容
- 直接使用AzureChatOpenAI实例时,缺少必要的适配层来转换消息格式
- 代理指标评估流程中对消息类型的假设与实际提供的类型不匹配
解决方案
针对这一问题,Ragas社区提供了有效的解决方案:
- 使用LangchainLLMWrapper进行封装 通过将AzureChatOpenAI实例用LangchainLLMWrapper进行封装,可以确保消息格式的正确转换和处理:
from ragas.llms import LangchainLLMWrapper
# 封装AzureChatOpenAI实例
scorer.llm = LangchainLLMWrapper(azure_model)
- 明确使用Ragas消息类型 在构建多轮对话样本时,确保使用Ragas库提供的消息类型,而不是LangChain的消息类型:
import ragas.messages as r
messages = [
r.HumanMessage(content="用户输入"),
r.AIMessage(content="AI响应"),
r.ToolMessage(content="工具输出")
]
技术要点
-
Wrapper模式的重要性 在集成不同AI框架时,适配器/包装器模式能够有效解决接口不兼容问题。LangchainLLMWrapper在这里充当了Ragas和LangChain之间的桥梁。
-
消息类型的统一性 AI对话系统中的消息类型定义需要保持一致,不同库可能对相同概念有不同的实现方式,明确使用特定库的消息类型可以避免混淆。
-
异步评估流程 Ragas的代理指标评估采用异步模式,开发者需要确保在异步上下文中正确调用相关方法。
最佳实践建议
- 在使用外部语言模型时,始终检查是否需要使用适配器进行封装
- 明确区分不同库的消息类型实现,避免混用
- 对于代理相关的复杂评估指标,先在简单样例上测试验证
- 关注库版本兼容性,特别是当使用多个AI相关库时
总结
Ragas项目中的Agentic AI指标评估功能为开发者提供了强大的工具来测量AI代理的行为质量。通过正确处理语言模型封装和消息类型问题,开发者可以充分利用这些指标来优化AI代理的性能。本文描述的问题解决方案不仅适用于当前特定错误,也为处理类似框架集成问题提供了通用思路。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130