Ragas项目中Agentic AI指标评估问题的分析与解决
2025-05-26 02:44:23作者:钟日瑜
问题背景
在Ragas项目(一个用于评估AI生成内容质量的Python库)的使用过程中,开发者在尝试评估Agentic AI指标(特别是主题一致性和代理目标准确性)时遇到了技术障碍。这个问题主要出现在使用AzureChatOpenAI作为语言模型的情况下,当尝试运行AgentGoalAccuracyWithReference等代理相关指标时,系统会抛出"TypeError: object of type 'StringPromptValue' has no len()"的错误。
错误现象分析
该错误通常发生在以下场景中:
- 开发者使用AzureChatOpenAI实例直接作为评分器的语言模型
- 尝试评估多轮对话样本(MultiTurnSample)的代理目标准确性
- 系统在处理提示值时,错误地将StringPromptValue对象当作可测量长度的序列来处理
错误堆栈显示问题起源于LangChain核心库的chat_models.py文件,当尝试获取消息批处理大小时,系统无法正确处理StringPromptValue类型的对象。
根本原因
经过深入分析,问题的核心在于:
- Ragas库与LangChain库在消息处理机制上存在不兼容
- 直接使用AzureChatOpenAI实例时,缺少必要的适配层来转换消息格式
- 代理指标评估流程中对消息类型的假设与实际提供的类型不匹配
解决方案
针对这一问题,Ragas社区提供了有效的解决方案:
- 使用LangchainLLMWrapper进行封装 通过将AzureChatOpenAI实例用LangchainLLMWrapper进行封装,可以确保消息格式的正确转换和处理:
from ragas.llms import LangchainLLMWrapper
# 封装AzureChatOpenAI实例
scorer.llm = LangchainLLMWrapper(azure_model)
- 明确使用Ragas消息类型 在构建多轮对话样本时,确保使用Ragas库提供的消息类型,而不是LangChain的消息类型:
import ragas.messages as r
messages = [
r.HumanMessage(content="用户输入"),
r.AIMessage(content="AI响应"),
r.ToolMessage(content="工具输出")
]
技术要点
-
Wrapper模式的重要性 在集成不同AI框架时,适配器/包装器模式能够有效解决接口不兼容问题。LangchainLLMWrapper在这里充当了Ragas和LangChain之间的桥梁。
-
消息类型的统一性 AI对话系统中的消息类型定义需要保持一致,不同库可能对相同概念有不同的实现方式,明确使用特定库的消息类型可以避免混淆。
-
异步评估流程 Ragas的代理指标评估采用异步模式,开发者需要确保在异步上下文中正确调用相关方法。
最佳实践建议
- 在使用外部语言模型时,始终检查是否需要使用适配器进行封装
- 明确区分不同库的消息类型实现,避免混用
- 对于代理相关的复杂评估指标,先在简单样例上测试验证
- 关注库版本兼容性,特别是当使用多个AI相关库时
总结
Ragas项目中的Agentic AI指标评估功能为开发者提供了强大的工具来测量AI代理的行为质量。通过正确处理语言模型封装和消息类型问题,开发者可以充分利用这些指标来优化AI代理的性能。本文描述的问题解决方案不仅适用于当前特定错误,也为处理类似框架集成问题提供了通用思路。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217