Apache DolphinScheduler 中停止 Spark on YARN 任务失败问题分析与解决
2025-05-18 18:09:00作者:侯霆垣
问题背景
在使用 Apache DolphinScheduler 调度 Spark on YARN 任务时,用户遇到了无法正常停止任务的问题。虽然 DolphinScheduler 的任务实例状态显示为"已终止",但实际上 Spark 作业仍在 YARN 上继续运行。
现象描述
当用户尝试通过 DolphinScheduler 停止 Spark 任务时,系统日志显示以下关键错误信息:
- 执行 yarn application -kill 命令失败
- 抛出 ExitCodeException,退出码为 137(表示 shell 执行被中断)
- 手动执行生成的 .kill 文件可以成功终止任务,但通过 DolphinScheduler 执行却失败
深入排查
通过 Arthas 调试工具深入分析,发现了根本原因:系统在执行停止操作时,尝试加载 /usr/hdp/current/hadoop/libexec/yarn-config.sh 文件失败。
这个文件是 Hadoop/YARN 环境配置文件,包含运行 YARN 命令所需的环境变量设置。当该文件不存在或无法访问时,会导致 YARN 命令执行失败。
问题根源
经过进一步分析,确定问题出在环境变量配置上:
HADOOP_HOME环境变量配置错误,指向了不存在的路径- 由于环境变量错误,系统无法定位到正确的 YARN 配置文件位置
- 手动执行可以成功是因为用户环境中已经正确设置了必要的环境变量
解决方案
解决此问题需要以下步骤:
-
检查并修正 Hadoop 环境变量:
- 确保
HADOOP_HOME指向正确的 Hadoop 安装目录 - 验证
PATH环境变量包含 Hadoop 的 bin 目录
- 确保
-
验证 YARN 配置文件:
- 确认
/usr/hdp/current/hadoop/libexec/yarn-config.sh文件存在 - 确保 DolphinScheduler 执行用户有读取该文件的权限
- 确认
-
环境变量配置:
- 在 DolphinScheduler 的环境配置文件(如 dolphinscheduler_env.sh)中添加必要的 Hadoop/YARN 环境变量
- 确保这些变量在任务执行时能被正确加载
技术原理
在 DolphinScheduler 中停止 YARN 应用的流程如下:
- 系统生成一个包含停止命令的 .kill 文件
- 通过 Shell 执行该文件
- 执行过程中会加载 YARN 相关环境配置
- 调用 yarn application -kill 命令终止应用
当环境变量配置不正确时,第三步会失败,导致整个停止操作无法完成。
最佳实践建议
为了避免类似问题,建议:
-
环境检查清单:
- 部署前验证所有必要的环境变量
- 确保关键配置文件存在且可读
- 测试基础命令(如 yarn 命令)能否正常执行
-
权限管理:
- 确保 DolphinScheduler 执行用户有足够的权限
- 验证 sudo -u 命令能否正常执行
-
日志分析:
- 关注系统日志和任务日志中的环境加载信息
- 使用调试工具(如 Arthas)进行深入分析
总结
通过本次问题排查,我们了解到环境变量配置对于分布式任务调度系统的重要性。正确的环境配置是保证 DolphinScheduler 与底层资源管理系统(如 YARN)正常交互的基础。开发者和运维人员应当重视环境检查,确保各组件间的无缝集成。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869