Apache DolphinScheduler 中停止 Spark on YARN 任务失败问题分析与解决
2025-05-18 15:37:49作者:侯霆垣
问题背景
在使用 Apache DolphinScheduler 调度 Spark on YARN 任务时,用户遇到了无法正常停止任务的问题。虽然 DolphinScheduler 的任务实例状态显示为"已终止",但实际上 Spark 作业仍在 YARN 上继续运行。
现象描述
当用户尝试通过 DolphinScheduler 停止 Spark 任务时,系统日志显示以下关键错误信息:
- 执行 yarn application -kill 命令失败
- 抛出 ExitCodeException,退出码为 137(表示 shell 执行被中断)
- 手动执行生成的 .kill 文件可以成功终止任务,但通过 DolphinScheduler 执行却失败
深入排查
通过 Arthas 调试工具深入分析,发现了根本原因:系统在执行停止操作时,尝试加载 /usr/hdp/current/hadoop/libexec/yarn-config.sh 文件失败。
这个文件是 Hadoop/YARN 环境配置文件,包含运行 YARN 命令所需的环境变量设置。当该文件不存在或无法访问时,会导致 YARN 命令执行失败。
问题根源
经过进一步分析,确定问题出在环境变量配置上:
HADOOP_HOME环境变量配置错误,指向了不存在的路径- 由于环境变量错误,系统无法定位到正确的 YARN 配置文件位置
- 手动执行可以成功是因为用户环境中已经正确设置了必要的环境变量
解决方案
解决此问题需要以下步骤:
-
检查并修正 Hadoop 环境变量:
- 确保
HADOOP_HOME指向正确的 Hadoop 安装目录 - 验证
PATH环境变量包含 Hadoop 的 bin 目录
- 确保
-
验证 YARN 配置文件:
- 确认
/usr/hdp/current/hadoop/libexec/yarn-config.sh文件存在 - 确保 DolphinScheduler 执行用户有读取该文件的权限
- 确认
-
环境变量配置:
- 在 DolphinScheduler 的环境配置文件(如 dolphinscheduler_env.sh)中添加必要的 Hadoop/YARN 环境变量
- 确保这些变量在任务执行时能被正确加载
技术原理
在 DolphinScheduler 中停止 YARN 应用的流程如下:
- 系统生成一个包含停止命令的 .kill 文件
- 通过 Shell 执行该文件
- 执行过程中会加载 YARN 相关环境配置
- 调用 yarn application -kill 命令终止应用
当环境变量配置不正确时,第三步会失败,导致整个停止操作无法完成。
最佳实践建议
为了避免类似问题,建议:
-
环境检查清单:
- 部署前验证所有必要的环境变量
- 确保关键配置文件存在且可读
- 测试基础命令(如 yarn 命令)能否正常执行
-
权限管理:
- 确保 DolphinScheduler 执行用户有足够的权限
- 验证 sudo -u 命令能否正常执行
-
日志分析:
- 关注系统日志和任务日志中的环境加载信息
- 使用调试工具(如 Arthas)进行深入分析
总结
通过本次问题排查,我们了解到环境变量配置对于分布式任务调度系统的重要性。正确的环境配置是保证 DolphinScheduler 与底层资源管理系统(如 YARN)正常交互的基础。开发者和运维人员应当重视环境检查,确保各组件间的无缝集成。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
495
3.63 K
Ascend Extension for PyTorch
Python
300
337
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
478
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
303
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871