GLM-4-9B-chat模型运行中的CUDA错误分析与解决方案
问题现象分析
在使用GLM-4-9B-chat模型进行推理时,用户遇到了一个有趣的CUDA错误现象:当输入文本长度不超过18个字符时,模型能够正常运行;但当输入文本超过18个字符后,系统会抛出CUBLAS_STATUS_NOT_SUPPORTED错误,提示在调用cublasGemmStridedBatchedExFix函数时出现问题。
错误根源探究
经过深入分析,发现这个问题的根本原因与显卡硬件对浮点计算精度的支持有关。具体表现为:
-
硬件限制:较老型号的显卡可能不支持bfloat16(Brain Floating Point 16)这种半精度浮点格式。bfloat16是近年来深度学习领域广泛使用的一种数值格式,它在保持与float32相同指数范围的同时减少了尾数位数。
-
动态计算路径:当输入较短时,模型可能采用了不同的计算路径或优化策略,这些路径可能不涉及特定的bfloat16操作,因此能够正常运行。而当输入长度增加后,模型切换到需要bfloat16支持的计算路径,触发了硬件不支持的报错。
解决方案
针对这一问题,可以采用以下解决方案:
- 强制使用float16:在模型加载时显式指定使用torch.float16而非bfloat16。这种方法虽然可能略微降低计算精度,但在大多数情况下仍能保持较好的模型性能。
model = AutoModel.from_pretrained("THUDM/glm-4-9b-chat", torch_dtype=torch.float16, trust_remote_code=True).cuda()
- 硬件升级:如果条件允许,可以考虑升级到支持bfloat16的较新显卡,如NVIDIA的Ampere架构(RTX 30系列)或更新架构的GPU。
技术背景延伸
理解这一问题的技术背景有助于更好地预防和解决类似问题:
-
混合精度训练:现代深度学习框架通常采用混合精度训练策略,自动在float32、float16和bfloat16之间切换以优化计算效率和内存使用。
-
硬件兼容性:不同世代的GPU对浮点格式的支持程度不同。例如,NVIDIA的Turing架构开始部分支持bfloat16,而Ampere架构则提供了完整的bfloat16支持。
-
框架自动选择:PyTorch等框架会根据硬件能力自动选择最佳计算路径,这解释了为什么短输入可能使用不同计算路径的现象。
最佳实践建议
为了避免类似问题,建议开发者在部署深度学习模型时:
- 明确了解目标硬件的计算能力支持
- 在代码中显式指定数据类型而非依赖自动选择
- 对输入长度进行充分的边界测试
- 在日志中记录使用的计算精度信息以便调试
通过以上分析和解决方案,开发者可以更好地应对GLM-4等大型语言模型部署过程中的硬件兼容性问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00